
Column #98: Color Me Tickled

The Nuts and Volts of BASIC Stamps (Volume 4) • Page 77

Column #98 June 2003 by Jon Williams:

Color Me Tickled

I've been around BASIC Stamps and other microcontrollers long enough that I really should be
jaded, but from time-to-time a really neat device comes along. Neat new devices are like great
golf games: one good one can make you forget all the bad or boring ones for the past several
months.

Back in December I was in our California office when a package arrived from a company called
Bueno Systems. Inside was a bunch of plastic pieces that I dutifully assembled into what turned
out to be an M&M® candy sorter. You can see a picture of this cool little machine on page 63 of
the new Parallax catalog. This thing is way beyond entertaining as it loads an M&M into a
scanner, "looks" at it, and then sorts it into a specific bin for that color.

At the heart of this device – and the subject of this month's article – is the TCS230 color sensor
from TAOS (Texas Advanced Optoelectronics Solutions). The TCS230 is similar to the TSL230
that both Scott Edwards and I have discussed in this column in the past. It is a light-to-frequency
converter. This difference is that the TCS230 uses an array of photo detectors; some have red
filters, some green, some blue, and the rest have no filters. Using two pins, we can select which
set of detectors are enabled. What this lets us do is "see" a particular primary color (or overall
level if no filter selected).

Column #98: Color Me Tickled

Page 78 • The Nuts and Volts of BASIC Stamps (Volume 4)

In case you forgot your high school science lessons (or you haven't been through them yet!) lets
take just a second to talk about light color theory. When all the frequencies of visible light are
mixed together we get white. The three primary constituents of white light are red, green and
blue. By mixing red, green and blue in varying proportions we can create any color. A great
example of this RGB color mixing is your television. In fact, if you get very close to the screen,
you can actually see the individual red, green and blue pixels that makes up each color point on a
TV scan line.

Getting back to the TCS230 ... it can't actually "see" color, it simply measures light intensity.
What happens is that a given filter only allows that particular primary color to pass through,
blocking the others. When we select the red filter, for example, only red light passes through so
we can measure the intensity of the red light the is falling onto the TCS230. By repeating this
process for green and blue as well, we're able to analyze the color that the TCS230 "sees." The
color is expressed with three values, R-G-B, as we use with televisions and computer monitors.

It turns out that the folks at TAOS are also fans of BASIC Stamps so they've created an
application kit for the TCS230. The kit includes the sensor mounted on a PCB with a prefocused
lens, clear LEDs for illumination, and a separate adapter board that plugs into the AppMod
connector on the Parallax Board-of-Education. The adaptor allows the BASIC Stamp to control
two sensor PCB assemblies.

For simplicity, we're going to connect directly to the sensor board. This will let us decide which
pins we want to use to the control and read the TCS230 – and we can use fewer pins. Using this
minimal configuration, we need just four Stamp I/O pins to select the color filter, enable or disable
the LEDs, and to read the frequency output of the TCS230.

Figure 98.1 shows the connections for our code. There are pull-ups on the PCB so the pins that
are not connected actually get pulled high. Of note are pins labeled S0 and S1 which are used to
divide the frequency output of the TCS230. Left unconnected, the output frequency is not
divided. It's important to point out that in very bright conditions the output frequency of the
TCS230 can exceed the capabilities of the BS2's COUNT function. In my experiments in
"typical" ambient light, I haven't found this to be a problem. The sensor PCB does have a couple
of open jumper connections so you can hard-wire the divider selection if you decide you need to
do that, and don't want to control the divider from the BASIC Stamp.

Okay, let's get to the code and see how we can use the TCS230 to scan and identify specific
colors. Now, even if you're not interested in color identification, you may want to stick with me
here because there are a couple neat tricks in this program that have applicability in a lot of
projects. Okay? Let's go.

Column #98: Color Me Tickled

The Nuts and Volts of BASIC Stamps (Volume 4) • Page 79

Figure 98.1: TCS230 Color Evaluation Module Connected to BASIC Stamp

Workin' Our Plan

Since I did my "Plan your work, work you plan" rant a couple months ago, let's start with our
projects goals:

1. Calibrate the sensor for white (white balance)
2. Scan and store known color samples
3. Scan and identify unknown samples

If you've never operated a video camera, you may not have come across the term "white balance."
What this is, essentially, is telling the system, "This is white." In theory, white light is composed
of equal amounts of red, green and blue light, but the truth is that the light sensors in the TCS230
(and our video cameras) are not equally sensitive to the various constituents. So what we do is put
a white target in front the sensor, illuminate it, measure the red, green and blue levels, then create
scaling factors so that the resultant levels for each color when it "sees" white are equalized. What
the scaling factors do is account for the variances in sensitivity between the constituent color
sensors, as well as any color bias from the illumination source.

Column #98: Color Me Tickled

Page 80 • The Nuts and Volts of BASIC Stamps (Volume 4)

How Green is Green?

Before we can scale our color readings, we have to take them, so let's start with an essential
element of the program: reading data from the sensor. Reading any of the constituent colors from
the TCS230 is very simple: We select the color filter, turn on the LEDs to illuminate the target,
measure the output using COUNT, then turn off the LEDs. Here's the code:

Read_Color:
 SELECT filter
 CASE Red
 LOW TcsS2
 LOW TcsS3

 CASE Green
 HIGH TcsS2
 HIGH TcsS3

 CASE Blue
 LOW TcsS2
 HIGH TcsS3

 CASE ELSE
 HIGH TcsS2
 LOW TcsS3
 ENDSELECT

 TcsLeds = IsOn
 COUNT TcsFreq, ScanTime, rawColor
 TcsLeds = IsOff
 RETURN

For this routine we will pass the constituent color selection in the variable filter. A SELECT-
CASE structure takes care of setting the filter control output pins. As you can see, the actual code
is shorter than the explanation. The program uses constants for the pin numbers as well as the
scan time used by the count function. Based on the TAOS examples and some experimentation,
the scan time in this program is 10 milliseconds. Note that no delay is required between enabling
the LEDs and using the COUNT function. LEDs are "instant on" devices and don't require any
warm-up like incandescent and other light sources.

The value returned by this subroutine is a word variable called rawColor. Remember this isn't
scaled for color sensitivity or illumination color bias.

Column #98: Color Me Tickled

The Nuts and Volts of BASIC Stamps (Volume 4) • Page 81

Fractions On The Fly

Beyond the pure "neato" factor of this program, one of the things I like best is the ability to
calculate a fractional scaling factor as required for white balancing the sensor. "Fractions?" you
wonder ... "The Stamp doesn't do fractions." Well, yes and no. True, the Stamp doesn't do
floating-point math, but we can multiply by a fractional value using the */ (star-slash) and ** (star-
star) operators. We're going to use */ here because it allows values greater than one.

How do we do it? Let's say, for example, that we measure a level of 85 and would like to scale
that level to 100. We can determine the scale factor with simple math:

 factor = target ÷ measurement

Using the numbers above, we'd end up with a scaling factor of 1.176. To get this into a format
that can be used by the */ operator we have to multiply the factor by 256. Since the math we're
doing is straight division and multiplication, we can actually rearrange the order a bit to make it
BASIC Stamp friendly and eliminate the integer-math truncation of the fractional part:

 factor = target x 256 ÷ measurement

What we'd end up with using 85 as our measurement and 100 as the target is 301. Going back,
301 divided by 256 is 1.175 – pretty close to the 1.176 we calculated earlier.

To white balance the sensor, then, we must place a white target in front of it, read each of the
constituent colors and then calculate scaling values for each of them.

White_Balance:
 filter = Red
 GOSUB Read_Color
 calRed = ScaleMax * 256 / rawColor
 filter = Green
 GOSUB Read_Color
 calGrn = ScaleMax * 256 / rawColor
 filter = Blue
 GOSUB Read_Color
 calBlu = ScaleMax * 256 / rawColor
 RETURN

Easy, huh? And yet very useful in this and other projects where we want to scale a [linear] input
value to a specified maximum. Okay, now that the sensor knows what white looks like, we need
to "teach" it the various colors we want to identify later.

Column #98: Color Me Tickled

Page 82 • The Nuts and Volts of BASIC Stamps (Volume 4)

Now that we have scaling factors for the constituents, reading the calibrated RGB colors is a no-
brainer:

Read_RGB:
 filter = Red
 GOSUB Read_Color
 redVal = rawColor */ calRed MAX ScaleMax
 filter = Green
 GOSUB Read_Color
 grnVal = rawColor */ calGrn MAX ScaleMax
 filter = Blue
 GOSUB Read_Color
 bluVal = rawColor */ calBlu MAX ScaleMax
 RETURN

I added in the MAX functions so that slight variations between the ambient light during testing
versus white balancing won't cause a roll-over error. In my version of the program the color
values are bytes and the ScaleMax value is 100. Using the MAX function is particularly important
if you decide to bump ScaleMax to 255 – you certainly don't want your readings rolling over to
zero.

When you download the full listing you'll see a color table built into the program and may wonder
why we can't just use that. There are a couple really good reasons, actually. You may want to
scan different colors, and even if you wanted to scan the same as I did, the lighting in your office
will probably be different than in mine (ambient light affects the overall reading). And at the end
of the day, anyone who has ever worked in quality control will tell you that you must make sure
your test equipment is calibrated before you can use it. So let's calibrate our color scanner.

Calibrate_Colors:
 FOR colIdx = 0 TO (NumColors - 1)
 DEBUG CLS, "TCS230 Color Calibration: "
 GOSUB Print_Color
 DEBUG CR, CR, "Insert sample. Press a key to scan..."
 TcsLeds = IsOn
 DEBUGIN inKey
 GOSUB Read_RGB
 eePntr = Colors + (3 * colIdx)
 WRITE eePntr, redVal, grnVal, bluVal
 NEXT
 DEBUG CLS
 RETURN

Column #98: Color Me Tickled

The Nuts and Volts of BASIC Stamps (Volume 4) • Page 83

The routine will loop through the number of colors set by the NumColors constant (the values are
zero-indexed, hence the NumColors – 1 end control value). For each color in the table, we'll see a
message screen that looks something like this:

TCS230 Color Calibration: Brown

Insert sample. Press a key to scan...

The color name also comes from a DATA table and I'll explain that in just a moment. The sensor
LEDs are lit to help with alignment of small items and after inserting the sample you press a key
(read with DEBUGIN), the color gets scanned, then the RGB data is stored in EEPROM. A
pointer to the location of the data (the red component) is calculated using the beginning of the
table (Colors) and the color index. The values are stored using a multi-byte WRITE statement.

Printing string names is nothing new, but I do want to share a little pointer that can be used to save
space in your programs. The string names are stored with zero-terminators like this:

' Color Names

CN0 DATA "Brown", 0
CN1 DATA "Red", 0
CN2 DATA "Orange", 0
CN3 DATA "Yellow", 0
CN4 DATA "Green", 0
CN5 DATA "Blue", 0
CN6 DATA "Violet", 0

Okay, here's the code that prints the color names:

Print_Color:
 LOOKUP colIdx, [CN0, CN1, CN2,
 CN3, CN4, CN5, CN6], eePntr

Print_String:
 DO
 READ eePntr, char
 IF (char = TermChar) THEN EXIT
 DEBUG char
 eePntr = eePntr + 1
 LOOP
 RETURN

What I want to point out is that this is two subroutines in one, accomplished by creating two entry
labels. The reason for this is that the first entry will LOOKUP the value of eePntr based on the
color index, the second section will simply print the string. By doing this we have a specific

Column #98: Color Me Tickled

Page 84 • The Nuts and Volts of BASIC Stamps (Volume 4)

routine to print the color name, and a general-purpose routine that will print any string we point to.
By "stacking" these routines so that the first falls into the second, we don't have to use GOSUB to
call the second from the first; this saves space on the GOSUB stack.

The last bit of hard work is comparing the RGB data table to see if we can match the current scan
values. Here's the subroutine that handles the search:

Match_Color:
 colIdx = 0
 DO WHILE (colIdx < NumColors)
 rgbIdx = 0
 DO WHILE (rgbIdx < 3)
 eePntr = Colors + (colIdx * 3) + rgbIdx
 READ eePntr, testVal
 testVal = ABS(testVal - rgb(rgbIdx))
 IF (testVal > ColorThresh) THEN EXIT
 rgbIdx = rgbIdx + 1
 LOOP
 IF (rgbIdx = 3) THEN EXIT
 colIdx = colIdx + 1
 LOOP
 RETURN

Though not too long, it looks a bit complicated. Structurally, there are two loops: the outer loop
indexes through the color table, the inner loop indexes through the three RGB components. The
inner loop starts by reading the current constituent (R, G or B) from the table then compares it to
the constituent of the scan. An array for the scan constituents is created using that aliasing trick I
showed you back in April.

redVal VAR Byte
grnVal VAR Byte
bluVal VAR Byte
rgb VAR redVal

By aliasing rgb to redVal, we can access the constituent colors as rgb(0) for red, rgb(1) for green,
and rgb(2) for blue.

The comparison result ends up in testVal. Notice that we use the ABS operator in case the test
value is less than the constituent we're comparing it to. The idea is that we we're looking for an
absolute variance, not just in one direction, but in both.

If the variance between the test value and the constituent color is greater than that specified by the
ColorThresh constant, the inner loop will be terminated with EXIT and the outer loop will index to
the next color. If we do happen to match all three colors, the inner loop will terminate on its own,

Column #98: Color Me Tickled

The Nuts and Volts of BASIC Stamps (Volume 4) • Page 85

and the outer loop will be terminated by a comparison that checks the value of rgbIdx. The value
of colIdx holds the match color. If we don't find a match, the outer loop will terminate by itself
and the value of colIdx will be the same as NumColors – indicating that no match was found.

The color match routine is the trickiest part of the program so give it a few minutes to sink in.
And keep in mind that it is "tunable" with the ColorThresh constant. You can make the routine
"looser" by increasing the ColorThresh value, or "tighter" by decreasing it.

Now that the hard work is out of the way, the main program loop is simple:

Main:
 DO
 GOSUB Read_RGB
 DEBUG "RGB = ",
 DEC3 redVal, ", ",
 DEC3 grnVal, ", ",
 DEC3 bluVal, " "

 GOSUB Match_Color
 IF (colIdx < NumColors) THEN
 GOSUB Print_Color
 DEBUG CR
 ELSE
 DEBUG "No match", CR
 ENDIF

 PAUSE 1000
 LOOP
 END

The main routine is a simple loop that scans the current target, prints the RGB color values then
displays the color name if a match was found, otherwise it prints "No match." Figure 98.2 shows
what the program display looks like when running (the "No Match" lines occur between samples
being placed under the sensor). You can see my setup in the photo. I used a piece of black felt to
eliminate reflections from the table and for fun, I decided to scan M&Ms again. M&Ms are
convenient since they come in seven colors, they're easy to acquire (you can run to any corner
store and pick them up) and when you're done and tired of scanning them you have a treat. You
can't beat that. Just be sure to use the "plain" variety as the peanut M&Ms have a tendency to roll
around too much!

Have fun with the TCS230 and do buy an extra bag of M&Ms so that you can snack while
experimenting. I'll see you next month. Until then, Happy Stamping.

Column #98: Color Me Tickled

Page 86 • The Nuts and Volts of BASIC Stamps (Volume 4)

Figure 98.2: Example DEBUG Output with M&Ms

Column #98: Color Me Tickled

The Nuts and Volts of BASIC Stamps (Volume 4) • Page 87

Figure 98.3: Identifying M&M Colors

Column #98: Color Me Tickled

Page 88 • The Nuts and Volts of BASIC Stamps (Volume 4)

' ===
'
' File....... Color_Scan.BS2
' Purpose.... Color Scanner with TAOS TCS230
' Author..... Jon Williams
' E-mail..... jwilliams@parallax.com
' Started....
' Updated.... 18 APR 2003
'
' {$STAMP BS2}
' {$PBASIC 2.5}
'
' ===

' -----[Program Description]---
'
' Simple color scanner using the TAOS TCS230 color sensor. This program
' uses a direct connection; the TCS dual-sensor adaptor (which is docu-
' mented with the sensor) is not used.
'
' NOTE: OE\ must be tied low to enable TCS230 output and allow control
' over LEDs.
'
' NOTE: To prevent sensor damage, download the program and run it before
' connecting the TCS230.

' -----[Revision History]--

' -----[I/O Definitions]---

TcsLeds PIN 0 ' LEDs enable - active low
TcsFreq PIN 1 ' freq from TCS230
TcsS2 PIN 2 ' color filter control
TcsS3 PIN 3

' -----[Constants]---

Red CON 0 ' TCS230 filter selection
Green CON 1
Blue CON 2
Clear CON 3

ScanTime CON 10 ' scan time in millisecs
ScaleMax CON 100 ' max for scaled values

IsOn CON 0 ' LED control is active low

Column #98: Color Me Tickled

The Nuts and Volts of BASIC Stamps (Volume 4) • Page 89

IsOff CON 1

NumColors CON 7 ' seven M&M colors
ColorThresh CON 5 ' allowable variance

TermChar CON 0 ' terminater for strings
StrLen CON 12 ' max length of names

' -----[Variables]---

filter VAR Nib ' filter selection
rawColor VAR Word ' raw return from TCS230

calRed VAR Word ' red calibration
calGrn VAR Word ' green calibration
calBlu VAR Word ' blue calibration

redVal VAR Byte ' red value
grnVal VAR Byte ' green value
bluVal VAR Byte ' blue value
rgb VAR redVal ' colors array

inKey VAR Byte ' input from user
colIdx VAR Nib ' color index
rgbIdx VAR Nib ' rgb index
testVal VAR Byte ' test value
eePntr VAR Word ' data table pointer
char VAR inKey ' char to print

' -----[EEPROM Data]---

' RGB data

Colors DATA 008, 005, 004 ' brown
 DATA 038, 007, 005 ' red
 DATA 075, 022, 008 ' orange
 DATA 086, 060, 011 ' yellow
 DATA 019, 044, 020 ' green
 DATA 005, 009, 023 ' blue
 DATA 021, 017, 031 ' violet

' Color Names

CN0 DATA "Brown", 0
CN1 DATA "Red", 0
CN2 DATA "Orange", 0
CN3 DATA "Yellow", 0
CN4 DATA "Green", 0
CN5 DATA "Blue", 0
CN6 DATA "Violet", 0

Column #98: Color Me Tickled

Page 90 • The Nuts and Volts of BASIC Stamps (Volume 4)

' -----[Initialization]--

Setup:
 TcsLeds = IsOff ' start off
 OUTPUT TcSLeds ' allow direct control
 GOSUB Calibrate_White ' white balance sensor
 GOSUB Calibrate_Colors ' calibrate color table

' -----[Program Code]--

Main:
 DO
 GOSUB Read_RGB ' scan color
 DEBUG "RGB = ", ' display components
 DEC3 redVal, ", ",
 DEC3 grnVal, ", ",
 DEC3 bluVal, " "

 GOSUB Match_Color ' compare scan to table
 IF (colIdx < NumColors) THEN ' match was found
 GOSUB Print_Color
 DEBUG CR
 ELSE
 DEBUG "No match", CR
 ENDIF

 PAUSE 1000 ' delay between scans
 LOOP
 END

' -----[Subroutines]---

' Calibrates "white" to ambient conditions

Calibrate_White:
 DEBUG CLS, "TCS230 White Balance"
 DEBUG CR, CR, "Insert white sample. Press a key to scan..."
 DEBUGIN inKey
 GOSUB White_Balance
 DEBUG CR, CR, "White balance complete."
 PAUSE 1000
 DEBUG CLS
 RETURN

' Reads "white" and calculates calibration values

Column #98: Color Me Tickled

The Nuts and Volts of BASIC Stamps (Volume 4) • Page 91

White_Balance:
 filter = Red
 GOSUB Read_Color ' read raw red
 calRed = ScaleMax * 256 / rawColor ' calculate red cal
 filter = Green
 GOSUB Read_Color ' read raw green
 calGrn = ScaleMax * 256 / rawColor ' calculate green scale
 filter = Blue
 GOSUB Read_Color ' read raw blue
 calBlu = ScaleMax * 256 / rawColor ' calculate blue scale
 RETURN

' Calibrates color table to ambient conditions

Calibrate_Colors:
 FOR colIdx = 0 TO (NumColors - 1) ' loop through all colors
 DEBUG CLS, "TCS230 Color Calibration: "
 GOSUB Print_Color
 DEBUG CR, CR, "Insert sample. Press a key to scan..."
 TcsLeds = IsOn ' light up scan area
 DEBUGIN inKey
 GOSUB Read_RGB ' scan sample item
 eePntr = Colors + (3 * colIdx) ' point to table entry
 WRITE eePntr, redVal, grnVal, bluVal ' save new data
 NEXT
 DEBUG CLS
 RETURN

' Reads selected color from TCS230
' -- takes "filter" as input
' -- returns "rawColor" as output (unscaled color value)

Read_Color:
 SELECT filter
 CASE Red
 LOW TcsS2
 LOW TcsS3

 CASE Green
 HIGH TcsS2
 HIGH TcsS3

 CASE Blue
 LOW TcsS2
 HIGH TcsS3

 CASE ELSE ' clear -- no filter
 HIGH TcsS2
 LOW TcsS3

Column #98: Color Me Tickled

Page 92 • The Nuts and Volts of BASIC Stamps (Volume 4)

 ENDSELECT

 TcsLeds = IsOn ' light sample
 COUNT TcsFreq, ScanTime, rawColor ' return unscaled value
 TcsLeds = IsOff
 RETURN

' Reads and scales RGB colors

Read_RGB:
 filter = Red
 GOSUB Read_Color
 redVal = rawColor */ calRed MAX ScaleMax
 filter = Green
 GOSUB Read_Color
 grnVal = rawColor */ calGrn MAX ScaleMax
 filter = Blue
 GOSUB Read_Color
 bluVal = rawColor */ calBlu MAX ScaleMax
 RETURN

' Compares current color scan with known values in
' table. If match is found, the value of "colIdx"
' will be less than "NumColors"

Match_Color:
 colIdx = 0
 DO WHILE (colIdx < NumColors) ' check known colors
 rgbIdx = 0
 DO WHILE (rgbIdx < 3) ' compare rgb components
 eePntr = Colors + (colIdx * 3) + rgbIdx ' point to color table
 READ eePntr, testVal ' read known r, g or b
 testVal = ABS(testVal - rgb(rgbIdx)) ' calculate variance
 IF (testVal > ColorThresh) THEN EXIT ' if out-of-range, next
 rgbIdx = rgbIdx + 1 ' test next component
 LOOP
 IF (rgbIdx = 3) THEN EXIT ' match found
 colIdx = colIdx + 1 ' try next color
 LOOP
 RETURN

' Print color name
' -- takes "colIdx" as input
' -- allow this to fall through to Print_String

Print_Color:
 LOOKUP colIdx, [CN0, CN1, CN2,
 CN3, CN4, CN5, CN6], eePntr

Column #98: Color Me Tickled

The Nuts and Volts of BASIC Stamps (Volume 4) • Page 93

' Print a string stored in DATA table
' -- point to first character with "eePntr"

Print_String:
 DO
 READ eePntr, char ' reach character
 IF (char = TermChar) THEN EXIT ' end of string?
 DEBUG char ' no -- print char
 eePntr = eePntr + 1 ' point to next
 LOOP
 RETURN

