

599 Menlo Drive, Suite 100
Rocklin, California 95765,
USA
Office: (916) 624-8333
Fax: (916) 624-8003

Sales:sales@parallax.com
Technical: support@parallax.com
Web Site: www.parallax.com

Copyright © Parallax Inc. ● Fundamentals: I/O and Timing Basics 1.0 ● 12/7/2006 ● Page 1 of 29

Fundamentals: Propeller I/O and Timing Basics
PROPELLER EDUCATION KIT LAB SERIES

Overview
Most microcontroller applications involve reading inputs, making decisions, and controlling outputs.
They also tend to be timing-sensitive, with the microcontroller determining when inputs are
monitored and outputs are updated. The pushbutton circuits in this lab will provide simple outputs
that the example applications can monitor with Propeller I/O pins set to input. Likewise, LED
circuits will provide a simple and effective means of monitoring propeller I/O pin outputs and event
timing.

While this lab’s pushbutton and LED example applications might seem rather simple, they make it
possible to clearly present a number of important coding techniques that will be used and reused in
later labs. Here is a list of this lab’s example applications and the coding techniques they introduce:

• Turn an LED on – assigning I/O pin direction and output state
• Turn groups of LEDs on – group I/O assignments
• Signal a pushbutton state with an LED – monitoring an input, and setting an output

accordingly
• Signal a group of pushbutton states with LEDs – parallel I/O, monitoring a group of inputs

and writing to a group of outputs
• Synchronized LED on/off signals – event timing based on a register that counts clock ticks
• Configure the Propeller chip’s system clock – choosing a clock source and configuring the

Propeller chip’s Phase-Locked Loop (PLL) frequency multiplier
• Display on/off patterns – Introduction to more Spin operators commonly used on I/O

registers
• Display binary counts – introductions to several types of operators and conditional looping

code block execution
• Shift a light display – conditional code block execution and shift operations
• Shift a light display with pushbutton-controlled refresh rate – global and local variables

and more conditional code block execution
• Timekeeping application with binary LED display of seconds – Introduction to

synchronized event timing that can function independently of other tasks in a given cog.

Prerequisites
PE Lab – Setup and Testing

Copyright © Parallax Inc. ● Fundamentals: I/O and Timing Basics v1.0 ● 12/7/2006 ● Page 2 of 29

Parts List and Schematic
This lab will use six LED circuits and three pushbutton circuits.

(6) LEDs – assorted colors
(6) Resistors – 100 Ω
(3) Resistor – 10 kΩ
(3) Pushbutton – normally open
(misc) jumper wires

 Build the schematic shown in Figure 1.

Figure 1: LED Pushbutton Schematic

Propeller Nomenclature
The Propeller microcontroller’s documentation makes frequent references to cogs, Spin, objects,
methods, and global and local variables. Here are brief explanations of each term:

• Cog – a processor inside the Propeller chip. The Propeller chip has eight cogs, making it
possible to perform lots of tasks in parallel. The Propeller is like a super-microcontroller
with eight high speed 32-bit microcontrollers inside. Each internal microcontroller (cog) has
access to the Propeller chip’s I/O pins and 32 KB of global RAM. Each cog also has its own
2 KB of ram that can either run a Spin code interpreter or an assembly language program.

• Spin and assembly languages – The Spin language is the high-level programming language

created by Parallax for the Propeller chip. Cogs executing Spin code do so by loading a Spin
interpreter from the Propeller chip’s ROM. This interpreter fetches and executes Spin
command codes that get stored in the Propeller chip’s Global Ram.

Propeller cogs can also be programmed in low-level assembly language. Whereas high-level
Spin tells a cog what to do, low-level assembly language tells a cog how to do it. Assembly
language generates machine codes that reside in a cog’s RAM and get executed directly by
the cog. Assembly language programs make it possible to write code that optimizes a cog’s
performance; however, it requires a more in-depth understanding of the Propeller chip’s
architecture. The PE Kit Fundamentals labs focus on Spin programming. Assembly
language programming will be introduced in Intermediate level PE kit labs.

Copyright © Parallax Inc. ● Fundamentals: I/O and Timing Basics v.1.0 ● 12/7/2006 ● Page 3 of 29

• Method – a block of executable Spin commands that has a name, access rule, and can
optionally receive and return parameter values and create local (temporary) variables.

• Global and local variables – Global variables are available to all the methods in a given

object, and they reserve variable space as long as an application is running. Local variables
are defined in a method, can only be used within that method, and only exist while that
method executes commands. When it’s done, the memory these local variables used becomes
available to for other methods and their local variables. Local and global variables are
defined with different syntax.

• Object – an application building block comprised of all the code in a given .spin file. Some

Propeller applications use just one object but most use several. Objects have a variety of uses,
depending partially on how they are written and partially on how they get configured and
used by other objects. Some objects serve as top level objects, which provide the starting
point where the first command in a given application gets executed. Other objects are written
to provide a library of useful methods for top level or other objects to use.

Objects can be written to use just one cog, or can include code that gets launched into one or
more cogs. Some objects have methods that provide a means to exchange information with
processes running in other cogs. One object can even make multiple copies of another object,
and set each one to a different task. Objects can use other objects, which in turn can use still
other objects. In more complex applications, a set of objects will form functional
relationships that can be viewed as a file structure with the Propeller Tool’s Object Info
window.

The examples in this lab only involve single, top-level objects with just one method. Upcoming labs
will introduce various building-block techniques for using multiple objects and methods in an
application, as well as parallel multiprocessing applications using multiple cogs. Though the objects
in this lab are simple, many of them will be modified later to serve as building blocks for other
objects and/or future projects.

Lights on with Direction and Output Register Bits
The LedOnP4 object shown below has a method named LedOn, with commands that instruct a cog in
the Propeller Chip to set its P4 I/O pin to output-high. This in turn causes the LED in the circuit
connected to P4 to emit light.

 Load LedOnP4 into RAM by clicking Run → Compile Current → Load RAM (or press F10).

'' File: LedOnP4.spin

PUB LedOn ' Method declaration

 dira[4] := 1 ' Set P4 to output
 outa[4] := 1 ' Set P4 high

 repeat ' Endless loop prevents program from ending

Copyright © Parallax Inc. ● Fundamentals: I/O and Timing Basics v1.0 ● 12/7/2006 ● Page 4 of 29

How LedOnP4.spin Works
The first lines in the program is a documentation comment. Single-line documentation comments are
denoted by two apostrophes (not a quotation mark) to the left of the documentation text.

 Click the Documentation radio button above the code in the Propeller Editor.

While commands like dira :=… and repeat don’t show in documentation mode, notice that the text
to the right of the double apostrophe documentation comments does appear. Notice also that the non-
documentation comments in the code, preceded by single apostrophes, do not appear in
Documentation mode.

 Try the other radio buttons and note what elements of the object they do/do not show.

Block Comments: There are also documentation block comments that can span multiple lines. They have to
begin and end with double-braces like this: {{ block of documentation comments }}. Non-documentation
comments can also span multiple lines, beginning and ending with single-braces like this: { block of non-
documentation comments }.

All Spin language commands that the Propeller chip executes have to be contained within a method
block. Every method block has to be declared with at least an access rule and a name. Access rules
and method names will be explored in depth in upcoming labs; for now, just keep in mind that PUB
LedOn is a method block declaration with a public (PUB) access rule and the name LedOn.

Bold or not bold? In the discussion paragraphs, the Parallax font used in the Propeller Tool is also used for
all text that is part of a program. The portions that are reserved words and necessary syntax will be in bold.
The portions that are defined by the user, such as method, variable, and constant names and values, will not
be in bold text. This mimics the Propeller Tool software’s syntax highlighting. Code listings and snippets are
not given the extra bolding. To see the full syntax-highlighted version, view it in the Propeller Tool.

The dira register is one of several special-purpose registers in Cog RAM; you can read and write to
the dira register, which stores I/O pin directions for each I/O pin. A 1 in a given dira register bit sets
that I/O pin to output; a 0 sets it to input. The symbol “:=” is the Assignment operator; the command
dira[4] := 1 assigns the value 1 to the dira register’s Bit 4, which makes P4 an output. When an
I/O pin is set to output, the value of its bit in the outa register either sets the I/O pin high (3.3 V) with
a 1, or low (0 V) with a 0. The command outa[4] := 1 sets I/O pin P4 high. Since the P4 LED
circuit terminates at ground, the result is that the LED emits light.

I/O Sharing among Cogs? Each cog has its own I/O Output (outa) and I/O Direction (dira) registers. Since
our applications use only one cog, we do not have to worry about two cogs trying to use the same I/O pin for
different purposes at the same time. When multiple cogs are used in one application, each I/O pin 's direction
and output state is the "wired--OR" of the entire cogs collective. How this works logically is described in the
I/O Pin section in Chapter 1 of the Propeller Manual.

The repeat command is one of the Spin language’s conditional commands. It can cause a block of
commands to execute repeatedly based on various conditions. For repeat to affect a certain block of
commands, they have to be below it and indented further by at least one space. The next command
that is not indented further than repeat is not part of the block, and will be the next command
executed after the repeat loop is done.

Since there’s nothing below the repeat command in the LedOnP4 object, it just repeats itself over
and over again. This command is necessary to prevent the Propeller chip from automatically going
into low power mode after it runs out of commands to execute. If the repeat command weren’t there,

Copyright © Parallax Inc. ● Fundamentals: I/O and Timing Basics v.1.0 ● 12/7/2006 ● Page 5 of 29

the LED would turn on too briefly to see, and then the chip would go into low power mode. To our
eyes it would appear that nothing happened.

Modifying LedOnP4
More than one assignment can be made on one line.

 Replace this:

 dira[4] := 1
 outa[4] := 1

...with this:

 dira[4] := outa[4] := 1

Of course, you can also expand the LedOn method so that it turns on more than one LED.

 Modify the LedOn method as shown here to turn on both the P4 and P5 LEDs:

PUB LedOn

 dira[4] := outa[4] := 1
 dira[5] := outa[5] := 1

 repeat

If the repeat command was not the last command in the method, the LEDs would turn back off again
so quickly that it could not be visually discerned as on for any amount of time. Only an oscilloscope
or certain external circuits would be able to catch the brief “on” state.

 Try running the program with the repeat command commented with an apostrophe to its left.
 If you have an oscilloscope, set it to capture a single edge, and see if you can detect the

signal.

I/O Pin Group Operations
The Spin language has provisions for assigning values to groups of bits in the dira and outa registers.
Instead of using a single digit between the brackets next to the outa command, two values separated
by two dots can be used to denote a contiguous group of bits. The binary number indicator % provides
a convenient way of defining the bit patterns that get assigned to the group of bits in the outa or dira
registers. For example, dira[4..9] := %111111 will set bits 4 through 9 in the dira register (to
output.) Another example, outa[4..9] := %101010 sets P4, clears P5, sets P6, and so on. The result
should be that the LED’s connected to P4, P6, and P8 turn on while the others stay off.

 Load GroupIoSet into RAM (F10).
 Verify that the P4, P6, and P8 LEDs turn on.

'' File: GroupIoSet.spin

PUB LedsOn

 dira[4..9] := %111111
 outa[4..9] := %101010

 repeat

Copyright © Parallax Inc. ● Fundamentals: I/O and Timing Basics v1.0 ● 12/7/2006 ● Page 6 of 29

Modifying GroupIoSet.spin
Notice that outa[4..9] := %101010 causes the state of the outa register’s bit 4 to be set (to 1), bit 5
cleared (to 0), and so on. If the pin group’s start and end values are swapped, the same bit pattern
will cause bit 9 to be set, bit 8 to be cleared, and so on…

 Replace

 outa[4..9] := %101010

with this

 outa[9..4] := %101010

 Load the modified program into the Propeller chip’s RAM and verify that the LEDs display a
reversed bit pattern.

It doesn’t matter what value is in an outa register bit if its dira register bit is zero. That’s because the
I/O pin functions as an input instead of an output when its dira register bit is cleared. An I/O pin set
to input has no effect on circuits connected to the pin. Setting all the bits in outa[4..9] but not all the
bits in dira[4...9] demonstrates how this works.

 Set all the outa[4..9] bits

 outa[4..9] := %111111

 Clear bits 6 and 7 in dira[4..9]

 dira[4..9] := %110011

 Load the modified program into the Propeller chip’s RAM and verify that the outa[6] and
outa[7] values have no effect on the P6 and P7 LEDs because their I/O pins are inputs
instead of outputs.

Reading an Input, Controlling an Output
The ina register is a read-only register in Cog RAM whose bits store the voltage state of each I/O pin.
When an I/O pin is set to output, its ina register bit will report the same value as the outa register bit
since ina bits indicate high/low I/O pin voltages with 1 and 0. If the I/O pin is instead an input, its
ina register bit updates based on the voltage applied to it. If a voltage above the I/O pin’s 1.65 V
logic threshold is applied, the ina register bit stores a 1; otherwise, it stores a 0. The ina register is
updated with the voltage states of the I/O pins each time an ina command is issued to read this
register.

The pushbutton connected to P21 will apply 3.3 V to P21 when pressed, or 0 V when not pressed. In
the ButtonToLed object below, dira[21] is set to 0, making I/O pin P21 function as an input. So, it
will store 1 if the P21 pushbutton is pressed, or 0 if it is not pressed. By repeatedly assigning the
value stored in ina[21] to outa[6], the ButtonLed method makes the P6 LED light whenever the P21
pushbutton is pressed. Notice also that the command outa[6] := ina[21] is indented below the
repeat command, which causes this line to get executed over and over again indefinitely.

 Load ButtonToLed into RAM.
 Press and hold the pushbutton connected to P21 and verify that the LED connected to P6

lights while the pushbutton is held down.

Copyright © Parallax Inc. ● Fundamentals: I/O and Timing Basics v.1.0 ● 12/7/2006 ● Page 7 of 29

'' File: ButtonToLed.spin
'' Led mirrors pushbutton state.

PUB ButtonLed ' Pushbutton/Led Method

 dira[6] := 1 ' P6 → output
 dira[21] := 0 ' P21 → input (this command is redundant)

 repeat ' Endless loop

 outa[6] := ina[21] ' Copy P21 input to P6 ouput

Read Multiple Inputs, Control Multiple Outputs
A group of bits can be copied from the ina to outa registers with a command like outa[6..4] :=
ina[21..23]. The dira[6] := 1 command will also have to be changed to dira[6..4] := %111
before the pushbuttons will make the LEDs light up.

 Save a copy of ButtonToLed, and modify it so that it makes the P23, P22, and P21
pushbuttons light up the P4, P5 and P6 LEDs respectively. Hint: you need only one outa
command.

 Try reversing the order of the pins in outa[6..4]. How does this affect the way the
pushbutton inputs map to the LED outputs? What happens if you reverse the order of bits in
ina[21..23]?

Timing Delays with the System Clock
Certain I/O operations are much easier to study with code that controls the timing of certain events,
such as when an LED lights or how long a pushbutton is pressed. The three basic Spin building
blocks for event timing are:

• cnt – a register in the Propeller chip that counts system clock ticks.
• clkfreq – a command that returns the Propeller chip’s system clock frequency in Hz.

Another useful way to think of it is as a value that stores the number of Propeller system
clock ticks in one second.

• waitcnt – a command that waits for the cnt register to get to a certain value.

The waitcnt command waits for the cnt register to reach the value between its parentheses. To
control the amount of time waitcnt waits, it’s best to add the number of clock ticks you want to wait
to cnt, the current number of clock ticks that have elapsed.

The example below adds clkfreq, the number of clock ticks in 1 second, to the current value of cnt.
The result of the calculation between the parentheses is the value the cnt register will reach 1 s later.
When the cnt register reaches that value, waitcnt lets the program move on to the next command.

waitcnt(clkfreq + cnt) ' wait for 1 s.

To calculate delays that last for fractions of a second, simply divide clkfreq by a value before adding
it to the cnt register. For example, here is a waitcnt command that delays for a third of a second, and
another that delays for 1 ms.

 waitcnt(clkfreq/3 + cnt) ' wait for 1/3 s
 waitcnt(clkfreq/1000 + cnt) ' wait for 1 ms

The LedOnOffP4 object uses the waitcnt command to set P4 on, wait for ¼ s, turn P4 off, and wait
for ¾ s. The LED will flash on/off at 1 Hz, and it will stay on for 25 % of the time.

Copyright © Parallax Inc. ● Fundamentals: I/O and Timing Basics v1.0 ● 12/7/2006 ● Page 8 of 29

'' File: LedOnOffP4.spin

PUB LedOnOff

 dira[4] := 1

 repeat

 outa[4] := 1
 waitcnt(clkfreq/4 + cnt)
 outa[4] := 0
 waitcnt(clkfreq/4*3 + cnt)

 Load LedOnOffP4 object into the Propeller chip’s RAM and verify that the light flashes

roughly every second, on ¼ of the time and off ¾ of the time.

!

Remember that indentation is important! Figure 2 shows a common mistake that can cause unexpected
results. On the left, all four lines below the repeat command are indented further than repeat. This means
they are nested in the repeat command, and all four commands will be repeated. On the right, the lines below
repeat are not indented. They are at the same level as the repeat command. In that case, the program never
gets to them because the repeat loop does nothing over and over again instead!

Notice the faint lines that connect the r in repeat to the commands below it. These lines indicate the
commands in the block that repeat operates on.

 To enable this feature in the Propeller Tool software, click Edit and select Preferences. Under the
Appearance tab, click the checkmark box next to Show Block Group Indicators.

Figure 2: Repeat Code Block
This repeat loop repeats four commands

The commands below repeat are not indented
further, so they are not part of the repeat loop.

Inside waitcnt(clkfreq + cnt)
When Run → Compile Current → Load… is used to download an object, the Propeller Tool software
examines it for certain constant declarations that configure the Propeller chip’s system clock. If the
object does not have any such clock configuration constants, the Propeller Tool software stores
default values in the Propeller chip’s CLK register which set it to use the internal RC oscillator to fast
mode (approximately 12 MHz) for the system clock. With the default 12 MHz system clock, the
instruction waitcnt(clkfreq + cnt) is equivalent to the instruction waitcnt(12_000_000 + cnt).

Figure 3 shows how waitcnt(12_000_000 + cnt) waits for the cnt register to accumulate to 12 million
more clock ticks than when the waitcnt command started. Keep in mind that the cnt register has
been incrementing with every clock tick since the Propeller chip was either reset or booted. In this
example, it has reached the 50,000,008th clock tick at the point when the waitcnt command is

Copyright © Parallax Inc. ● Fundamentals: I/O and Timing Basics v.1.0 ● 12/7/2006 ● Page 9 of 29

executed. The cnt value waitcnt waits for is 12_000_000 + 50_000_008 = 62_000_008. So, the cog
executing waitcnt(12_000_000 + cnt) is allowed to move on to the next command after the cnt
register has counted the 62,000,008th clock tick.

Figure 3: waitcnt Command and the cnt Register

System Clock Configuration and Event Timing
Up to this point, our programs have been using the Propeller chip's default internal 12 MHz clock.
Next, let's modify them to use the external 5 MHz oscillator in our PE Platform circuit. Both Spin
and Propeller assembly have provisions for declaring constants that configure the system clock and
making sure that all the objects know its current operating frequency. The CON block designator
defines a section of code for declaring Propeller configuration settings, as well as global constant
symbols for program use.

Declarations similar to ones in the CON block below can be added to a top level object to configure the
Propeller chip’s system clock. This particular set of declarations will make the Propeller chip’s
system clock run at top speed, 80 MHz.

 CON
 _xinfreq = 5_000_000
 _clkmode = xtal1 + pll16x

The line _xinfreq = 5_000_000 defines the expected frequency from the external oscillator, which in
the PE Platform’s case is 5 MHz. The line _clkmode = xtal1 + pll16x causes the Propeller Tool
software’s Spin compiler to set certain bits in the chip’s CLK register when it downloads the program.
The xtal1 clock mode setting configures certain XO and XI pin circuit characteristics to work with
external crystals in the 4 to 16 MHz range.

The frequency of the external crystal provides the input clock signal which the Propeller chip’s
Phase-Locked Loop (PLL) circuit multiplies for the system clock. pll16x is a predefined clock mode
setting constant which makes the PLL circuit multiply the 5 MHz frequency by 16 to supply the
system with an 80 MHz clock signal. The constant pll8x can be used with the same oscillator to run
the Propeller chip’s system clock at 40 MHz. pll4x will make the Propeller chip’s system clock run
at 20 Mhz, and so on. The full listing of valid _clkmode constant declarations can be found in the
Propeller Manual's Spin Language Reference _CLKMODE section.

Copyright © Parallax Inc. ● Fundamentals: I/O and Timing Basics v1.0 ● 12/7/2006 ● Page 10 of 29

Crystal Precision

The Propeller chip's internal RC clock serves for non-timing-sensitive applications, such as controlling outputs
based on inputs and blinking lights. For applications that are timing-sensitive like serial communication, tone
generation, servo control, and timekeeping, the Propeller chip can be connected to crystal oscillators and other
higher-precision external clock signals via its XI and XO pins.

The Propeller chip’s internal oscillator in its default RCFAST mode is what the Propeller chip uses if the program
does not specify the clock source or mode. This oscillator’s nominal frequency is 12 MHz, but its actual
frequency could fall anywhere in the 8 to 20 MHz range. That’s an error of +66 to – 33%. Again, for
applications that do not require precise timing, it suffices. On the other hand, an application like asynchronous
serial communication can only tolerate a total of 5 % error, and that’s the sum of both the transmitter’s and
receiver’s timing errors. In practical designs, it would be best to shoot for an error of less than 1%. By using
an external crystal for the Propeller chip’s clock source, the clock frequency can be brought well within this
tolerance, or even within timekeeping device tolerances.

The PE Platform has an ESC Inc. HC-49US quartz crystal connected to the Propeller chip’s XI and XO pins
that can be used in most timing-sensitive applications. The datasheet for this part rates its room temperature
frequency tolerance at +/- 30 PPM, meaning +/- 30 clock ticks for every million. That’s a percent error of only
+/- 0.003%. Obviously, this is more than enough precision for asynchronous serial communication, and it’s
also great for servo control and tone generation. It’s not necessarily ideal for watches or clocks though; this
crystal’s error could cause an alarm clock or watch to gain or lose up to 2.808 s per day. This might suffice for
datalogging or clocks that periodically check in with an atomic clock for updates. Keep in mind that to make
the Propeller chip function with digital wristwatch precision, all it takes is a more precise oscillator.

The HC-49US datasheet also has provisions for temperature (+/- 50 PPM) and aging (+/- 5 PPM per year).
Even after 5 years, and at its rated -10 to + 70 ° C, the maximum error would be 105 PPM, which is still only
+/- 0.0105% error. That’s still great for asynchronous serial communication, tone generation, and servo
control, but again, an alarm clock might gain or lose up to 9 s per day.

Since clkfreq stores the system clock frequency, object code can rely on it for correct timing,
regardless of the system clock settings. The clkfreq command returns the number of ticks per second
based on the Propeller chip’s system clock settings. For example, this CON block uses _xinfreq =
5_000_000 and _clkmode = xtal1 + pll16x., so clkfreq will return the value of 5_000_000 × 16,
which equals 80_000_000.

ConstantBlinkRate.spin can be configured to a variety of system clock rates to demonstrate how
clkfreq keeps the timing constant regardless of the clock frequency.

 Load ConstantBlinkRate.spin into the Propeller chip’s RAM (F10). The system clock will be
running at 80 MHz.

 Verify that the blink rate is 1 Hz.
 Modify the _clkmode constant declaration to read _clkmode = xtal1 + pll8x to make the

system clock run at 40 MHz, and load the program into RAM (F10).

'' File: ConstantBlinkRate.spin

CON

 _xinfreq = 5_000_000
 _clkmode = xtal1 + pll16x

PUB LedOnOff

 dira[4] := 1

 repeat

 outa[4] := 1
 waitcnt(clkfreq/2 + cnt)
 outa[4] := 0
 waitcnt(clkfreq/2 + cnt)

Copyright © Parallax Inc. ● Fundamentals: I/O and Timing Basics v.1.0 ● 12/7/2006 ● Page 11 of 29

The Propeller chip’s system clock is now running at 40 MHz. Is the LED still blinking on/off at 1 Hz?

 Repeat for pll4x, pll2x, and pll1x. There should be no change in the blink rate at any of
these system clock frequencies.

Timing with clkfreq vs. Timing with Constants
Let’s say that a constant value is used in place of clkfreq to make the program work a certain way at
one particular system clock frequency. What happens when the Propeller system clock frequency
changes?

 Save a copy of the ConstantBlinkRate object as BlinkRatesWithConstants.spin.
 Make sure the PLL multiplier is set to pll1x so that the system clock runs at 5 MHz.
 For a 1 Hz on/off signal, replace both instances of clkfrq/2 with 2_500_000.
 Load the object into the Propeller chip’s RAM and verify that the LED blinks at 1 Hz.
 Next, change the PLL multiplier to pll2x. Load the modified object into the Propeller chip’s

RAM. Does the light blink twice as fast? Try pll4x, pll8x, and pll16x.

When a constant value was used instead of clkfreq, a change in the system clock caused a change in
event timing. This is why objects should use clkfreq when predictable delays are needed, especially
for objects that are designed to be used by other objects. That way, the programmer can choose the
best clock frequency for the application without having to worry about whether or not any of
application’s objects will behave differently.

More Output Register Operations
In the I/O Pin Group Operations section, binary values were assigned to groups of bits in the dira and
outa registers. There are lots of shortcuts and tricks for manipulating groups of I/O pin values that
you will see used in published code examples.

The Post-Set “~~” and Post-Clear “~” Operators
Below are two example objects that do the same thing. While the object on the left uses techniques
covered earlier to set and clear all the bits in dira[4..9] and outa[4..9], the one on the right does it
differently, with the Post-Set “~~”and Post-Clear “~”operators. These operators come in handy when
all the bits in a certain range have to be set or cleared.

 Load each program into the Propeller chip’s RAM and verify that they function identically.
 Examine how the Post-Set operator replaces := %111111 and the Post-Clear operator

replaces := %000000.

''File: LedsOnOff.spin
''All LEDS on for 1/4 s and off
''for 3/4 s.

PUB BlinkLeds

 dira[4..9] := %111111

 repeat

 outa[4..9] := %111111
 waitcnt(clkfreq/4 + cnt)
 outa[4..9] := %000000
 waitcnt(clkfreq/4*3 + cnt)

''File: LedsOnOffAgain.spin
''All LEDS on for 1/4 s and off
''for 3/4 s with post set/clear.

PUB BlinkLeds

 dira[4..9]~~

 repeat

 outa[4..9]~~
 waitcnt(clkfreq/4 + cnt)
 outa[4..9]~
 waitcnt(clkfreq/4*3 + cnt)

Copyright © Parallax Inc. ● Fundamentals: I/O and Timing Basics v1.0 ● 12/7/2006 ● Page 12 of 29

 Try modifying both programs so that they only affect P4..P7. Notice that the Post-Set and
Post-Clear operators require less maintenance since they automatically set or clear all the bits
in the specified range.

The Bitwise Not “!” Operator
Here are two more example programs that do the same thing. This time, they both light alternate
patterns of LEDs. The one on the left has familiar assignment operators in the repeat loop. The one
on the right initializes the value of outa[4..9] before the repeat loop. Then in the repeat loop, it uses
the Bitwise NOT “!” operator on outa[4..9]. If outa[4..9] stores %100001, the command
!outa[4..9] inverts all the bits (1s become 0s, 0s become 1s). So, the result of !outa[4..9] will be
%011110.

 Load each object into the Propeller chip’s RAM and verify that they function identically.
 Try doubling the frequency of each object.

Register Bit Patterns as Binary Values
A range of bits in a register can be regarded as digits in a binary number. For example, in the
instruction outa[9..4] := %000000,recall that % is the binary number indicator; %000000 is a 6-bit
binary number with the value of zero. Operations can be performed on this value, and the result
placed back in the register. The IncrementOuta object below adds 1 to outa[9..4] each time through
a repeat loop. The result will be the following sequence of binary values, displayed on the LEDs:

Binary Value Decimal Equivalent
%000000 0
%000001 1
%000010 2
%000011 3
%000100 4
%000101 5
etc…
%111101 61
%111110 62
%111111 63

 Load IncrementOuta.spin it into RAM.

''File: LedsOnOff50Percent.spin
''Leds alternate on/off 50% of
''the time.

PUB BlinkLeds

 dira[4..9]~~

 repeat

 outa[4..9] := %100001
 waitcnt(clkfreq/4 + cnt)
 outa[4..9] := %011110
 waitcnt(clkfreq/4 + cnt)

''File: LedsOnOff50PercentAgain.spin
''Leds alternate on/off 50% of
''the time with the ! operator.

PUB BlinkLeds

 dira[4..9]~~
 outa[4..9] := %100001

 repeat

 !outa[4..9]
 waitcnt(clkfreq/4 + cnt)

Copyright © Parallax Inc. ● Fundamentals: I/O and Timing Basics v.1.0 ● 12/7/2006 ● Page 13 of 29

'' File: IncrementOuta.spin

PUB BlinkLeds

 dira[9..4]~~
 outa[9..4]~

 repeat

 waitcnt(clkfreq/2 + cnt)
 outa[9..4] := outa[9..4] + 1

Incrementation starts by setting LED I/O pins to output with dira[9..4]~~. Next, outa[9..4]~ clears
all the bits in the outa register range 9..4 to %000000, binary zero. The first time through the repeat
loop, 1 is added to it, the equivalent of outa[9..4] := %000001, which causes the P4 LED to light up.
As the loop repeats indefinitely, the LED pattern cycles through every possible permutation.

The Increment “++” operator
The Increment “++”operator can be used instead of + 1 to increment a value. The command
outa[9..4]++ is equivalent to outa[9..4] := outa[9..4] + 1.

 Modify the outa command in the repeat loop to use only outa[9..4]++ .
 Load the modified object into RAM. Do the LEDs behave the same way?

Conditional Repeat Commands
Syntax options for repeat make it possible to specify the number of times a block of commands is
repeated. They can also be repeated until or while one or more conditions exist, or even to sweep a
variable value from a start value to a finish value with an optional step delta.

 Read the syntax explanation in the REPEAT section of the Propeller Manual's Spin Language
Reference, if you have it handy.

Let's modify IncrementOuta further to stop after the last value (%111111 = 63) has been displayed.
To limit the loop to 63 cycles just add an optional Count expression to the repeat command, like this:

repeat 63

 Save IncrementOuta.spin as BinaryCount.spin.
 Add the Count value 63 after the repeat command.
 To keep the LEDs lit after the repeat block terminates, add a second repeat command below

the block. Make sure it is not indented further than the first repeat.
Load the BinaryCount object into the Propeller chip’s RAM and verify that the LEDs
light up according to the Binary Value sequence.

There are a lot of different ways to modify the repeat loop to count to a certain value and then stop.
Here are a few repeat loop variations that count to decimal 20 (binary %010100); the second example
uses the Is Equal “==” operator, the third uses Is Less Than “<”

 repeat 20 ' Repeat loop 20 times
 repeat until outa[9..4] == 20 ' Repeat until outa[9..4] is equal to 20
 repeat while outa[9..4] < 20 ' Repeat while outa[9..4] is less than 20

Copyright © Parallax Inc. ● Fundamentals: I/O and Timing Basics v1.0 ● 12/7/2006 ● Page 14 of 29

Operations in Conditions and Pre and Post Operator Positions
(11 more ways to count to 20)

The outa[9..4]++ command can be removed from the code block in the repeat loop and incremented
right inside the repeat command conditions. The IncrementUntilCondition object shows an example
that counts to 20 with outa[9..4] incremented by the ++ operator right in the repeat loop’s condition.

'' File: IncrementUntilCondition.spin

PUB BlinkLeds

 dira[4..9]~~

 repeat until outa[9..4]++ == 19

 waitcnt(clkfreq/2 + cnt)

 repeat

 outa and dira initialize to zero when the program starts, so there is no need to include outa[9..4]~.

 Load IncrementUntilCondition.spin into the Propeller and verify that it counts to 20.

Note that the loop repeats until 19, but the program actually counts up to 20. Another way to use ++
in the repeat loop’s condition is to place it before outa[9..4], like this:

repeat until ++outa[9..4] == 20

 Modify the IncrementUntilCondition object’s repeat command, with its condition being
until ++outa[9..4] == 20. Verify that it still stops counting at 20.

What’s the difference? If the ++ is placed to the left of outa[9..4], it is typically called
Pre-Increment and the operation is performed before the ++outa[9..4] ==… condition is evaluated.
(The operator -- placed to the left called Pre-Decrement.) Likewise, if ++ or -- is placed to the right
of outa[9..4], it is typically called Post-Increment or Post-Decrement, and the operation is performed
after the condition is evaluated.

With repeat until outa[9..4]++ == 19, the loop delays when outa[9..4] stores 0, 1, 2…19. When
outa[9..4] stores 19, the loop does not repeat the waitcnt. However, since the post-incrementing
occurs after the condition is evaluated, another 1 gets added to outa[9..4] even though the loop
doesn't get repeated again.

With repeat until ++outa[9..4] == 20, outa[9..4] is pre-incremented, so the first delay doesn’t
occur until after outa[9..4] gets bumped up to 1. The next delay occurs after 2, 3, and so on up
through 19. The next repetition, outa[9..4] becomes 20, so waitcnt command inside the loop does
not execute, but again, the last value that outa[9..4] holds is 20.

Instead of repeating until a condition is true, a loop can be repeated while a condition is true. Here
are examples that count to 20 using the while condition, with Post- and Pre-Increment operators
adding 1 to outa[9..4]:

Copyright © Parallax Inc. ● Fundamentals: I/O and Timing Basics v.1.0 ● 12/7/2006 ● Page 15 of 29

repeat while outa[9..4]++ < 19 ' Repeat while outa[9..4] post-incremented is less
 ' than 19.
repeat while ++outa[9..4] < 20 ' Repeat while outa[9..4] pre-incremented is less
 ' than 20.

Notice that the post-incremented loop counts to 20, repeating while outa[9..4] is less than 19, but the
pre-incremented version repeats while outa[9..4] is less than 20. Notice that with repeat while…,
the Is Less Than “<” operator is used instead of the Is Equal “==”operator. These two approaches
demonstrate the distinction between repeating until something is equal to a value as opposed to
repeating while something is less than a value.

Of course, you could also use the Is Equal or Less “=<” operator, or even the Is Not Equal “<>”
operator. Here are examples of those; in each case the LED display will stop at binary 20.

repeat while outa[9..4]++ =< 18 ' Repeat while outa[9..4] post-incremented is less
 ' than or equal to 18.
repeat while ++outa[9..4] =< 19 ' Repeat while outa[9..4] pre-incremented is less
 ' than 19.
repeat while ++outa[9..4] <> 20 ' Repeat while outa[9..4] pre-incremented is not
 ' equal to 20.

Is Greater “>” or even Is Equal or Greater “=>” also be used with repeat until…

repeat until outa[9..4]++ > 18 ' Repeat until outa[9..4] post-incremented is
 ' greater than 18.
repeat until ++outa[9..4] > 19 ' Repeat until outa[9..4] pre-incremented is
 ' greater than 19.
repeat until ++outa[9..4] => 20 ' Repeat until outa[9..4] pre-incremented is equal
 ' or greater than 20.
repeat until outa[9..4]++ => 19 ' Repeat until outa[9..4] post-incremented is equal
 ' or greater than 19.

 Examine each of the repeat commands and try each one in the IncrementUntilCondition

object.

If there are any question marks in your brain about this, don’t worry right now. The point of this
section is to demonstrate that there is a variety of ways to make comparisons and to increment values.
Upcoming labs will include better ways to display each loop repetition so that you can test each
approach.

One More Repeat Variations with From...To...
(Or, Another 3 Ways to Count to 20)

Here is one more condition for repeat, repeating outa[9..4] from one value to another value. With
each repetition of the loop, this form of repeat automatically adds 1 to the count each time through.
Take a look at the code snippet below. The first time through the loop, outa[9..4] starts at 0. The
second time through, 1 is automatically added, and the condition is checked to make sure outa[9..4]
is greater than or equal to 0 or less than or equal to 19. 1 is added each time through the loop. After
the repetition where outa[9..4] is equal to 19, it adds 1 to outa[9..4], making 20. Since 20 is not in
the "from 0 to 19" range, the code in the loop does not execute.

repeat outa[9..4] from 0 to 19 ' Add 1 to outa[9..4] with each repetition
 ' start at 0 and count through 19. Repeat's Code
 ' block when outa[9..4] gets to 20.

Copyright © Parallax Inc. ● Fundamentals: I/O and Timing Basics v1.0 ● 12/7/2006 ● Page 16 of 29

Here is a repeat command that serves a similar function using and. It tests for two conditions, both of
which must be true in order for the loop to repeat. Here we need to increment outa[9..4] within the
loop block:

repeat while (outa[9..4] => 0) and (outa[9..4] =< 19)
 outa[9..4]++

Another nice thing about the repeat…from…to… form is you can use an optional step argument.
For example, if you want to repeat what’s in a loop with outa[9..4] at all even values, and exit the
loop leaving outa[9..4] at 20, here’s a way to do it:

Repeat outa[9..4] from 0 to 18 step 2

 Try the various repeat command variations in this section in the IncrementUntilCondition
object.

Some Operator Vocabulary
Unary operators have one operand. For example, the Negate operator “-” in the expression -1 is a
unary operator, and 1 is the operand. Binary operators have two operands; for example, the Subtract
operator “-” in the expression x - y is a binary operator, and both x and y are operands.

Normal operators, such as Add “+”, operate on their operands and provide a result for use by the rest
of the expression without affecting the operand(s). Some operators we have used such as :=, ~~, ~,
and ! are assignment operators. Unary assignment operators, such as ~ , ~~, and ++ write the result of
the operation back to the operand whereas binary assignment operators, such as :=, assign the result
to the operand to the immediate left. In both cases the result is available for use by the rest of the
expression.

The shift operators Shift Left “>>”and Shift Right “<<” take the binary bit pattern of the value in the
first operand and shift it to the right or the left by the number of bits specified by a second operand,
and returns the value created by the new bit pattern. If an assignment form is used (>>= or <<=) the
original value is overwritten with the result. The shift operators are part of a larger group, Bitwise
operators, which perform various bit manipulations. The Bitwise NOT “!”operator we used earlier
is an example.

Some normal and assignment operators have the additional characteristic of being a comparison
operator. A comparison operator returns true (-1) if the values on both sides of the operator make the
expression true, or false (0) if the values on both sides make the expression false. (These binary
comparison operators are also called Boolean operators; there is also a unary Boolean operator, NOT.)

Conditional Blocks with if
As with many programming languages, Spin has an if command that allows a block of code to be
executed conditionally, based on the outcome of a test. An if command can be used on its own, or as
part of a more complex series of decisions when combined with elseif, elseifnot and else.
Comparison operators are useful to test conditions in if statements:

if outa[9..4] == 0
 outa[9..4] := %100000

 waitcnt(clkfreq/10 + cnt)

Copyright © Parallax Inc. ● Fundamentals: I/O and Timing Basics v.1.0 ● 12/7/2006 ● Page 17 of 29

If the condition is true, the block of code (one line in this case) below it will be executed. Otherwise,
the program will skip to the next command that’s at the same level of indentation as the if statement
(here it is waitcnt).

Shifting LED Display
The next example object, ShiftRightP9toP4, makes use of several types of operators to efficiently
produce a shifting light pattern with our 6 LED circuits.

 Load ShiftRightP9toP4 into the Propeller chip’s RAM.
 Orient your PE platform so that the light appears to be shifting from left to right over and

over again.
 Verify that the pattern starts at P9 and ends at P4 before repeating.

'' File: ShiftRightP9toP4.spin
'' Demonstrates the right shift operator and if statement.

PUB ShiftLedsLeft

 dira[4..9] ~~

 repeat

 if outa[9..4] == 0
 outa[9..4] := %100000

 waitcnt(clkfreq/10 + cnt)
 outa[9..4] >>= 1

Each time through the repeat loop, the command if [9..4] == 0 uses the == operator to compare
outa[9..4] against the value 0. If the expression is true, the result of the comparison is -1. If it’s
false, the result is 0. Remember that by default outa[9..4] is initialized to zero, so the first time
through the repeat loop outa[9..4] == 0 evaluates to true. This makes the if statement execute
the command outa[9..4] := %100000, which turns on the P9 LED.

After a 1/10 s delay, >>= (the shift right assignment operator) takes the bit pattern in outa[9..4] and
shifts it right one bit with this instruction: outa[9..4] >>= 1. The rightmost bit that was in outa[4] is
discarded, and the vacancy created in outa[9] gets filled with a 0. For example, if outa[9..4] stores
%011000 before outa[9..4] >>= 1, it will store %001100 afterwards. If the command was outa[4..9]
>>= 3, the resulting pattern would instead be %000011

Each time through the loop, the outa[9..4] >>= 1 command shifts the pattern to the right, cycling
through %100000, %010000, %001000,…, %000001, %000000. When outa[9..4] gets to %000000, the if
command sees that outa[9..4], stores a 0, so stores %100000 in outa[9..4], and the shifting LED light
repeats.

 Try changing the second operand in the shift right operation from 1 to 2, to make the pattern
in outa[4...9] shift two bits at a time. You should now see every other LED blink from left
to right.

Copyright © Parallax Inc. ● Fundamentals: I/O and Timing Basics v1.0 ● 12/7/2006 ● Page 18 of 29

Variable Example
The ButtonShiftSpeed object below is an expanded version of ShiftRightP9toP4 that allows you to
use pushbuttons to control the speed at which the lit LED shifts right. If you hold the P21 pushbutton
down the shift rate slows down; hold the P22 pushbutton down and the shift rate speeds up. The
speed control is made possible by storing a value in a variable. The pattern that gets shifted from left
to right is also stored in a variable, making a number of patterns possible that cannot be achieved by
performing shift operations on the bits in outa[9..4].

 Load ButtonShiftSpeed.spin into RAM.
 Try holding down the P22 pushbutton and observe the change in the LED behavior, then try

holding down the P21 pushbutton.

'' File: ButtonShiftSpeed.spin
'' LED pattern is shifted left to right at variable speeds controlled by pushbuttons.

VAR

 Byte pattern, divide

PUB ShiftLedsLeft

 dira[4..9] ~~
 divide := 5

 repeat

 if pattern == 0
 pattern := %11000000

 if ina[22] == 1
 divide ++
 divide <#= 254
 elseif ina[21] == 1
 divide --
 divide #>= 1

 waitcnt(clkfreq/divide + cnt)
 outa[9..4] := pattern
 pattern >>= 1

ButtonShiftSpeed has a variable (VAR) block that declares two byte-size variables, pattern and
divide. The pattern variable stores the bit pattern that gets manipulated and copied to outa[9..4],
and divide stores a value that gets divided into clkfreq for a variable-length delay.

Byte is one of three options for variable declarations, and it can store a value from 0 to 255. Other
options are word (0 to 65536) and long (-2,147,483,648 to 2,147,483,647). Variable arrays can be
declared by specifying the number of array elements in brackets to the right of the variable name. For
example, byte myBytes[20] would result in a 20-element array named myBytes. This would make
available the variables myBytes[0], myBytes[1], myBytes[2],…, myBytes[18], and myBytes[19].

The first if block in the repeat loop behaves similarly to the one in the ShiftRightP9toP4 object.
Instead of outa[9..4], the if statement examines the contents of the pattern variable, and if it’s zero,
the next line reassigns pattern the value %11000000.

The Limit Minimum “#>”and Limit Maximum “<#” Operators
Spin has Limit Minimum “#>” and Limit Maximum “<#”operators that can be used to keep the value
of variables within a desired range as they are redefined by other expressions. In our example object,

Copyright © Parallax Inc. ● Fundamentals: I/O and Timing Basics v.1.0 ● 12/7/2006 ● Page 19 of 29

the second if statement in the repeat loop is part of an if…elseif… statement that checks the
pushbutton states. If the P22 pushbutton is pressed, divide gets incremented by 1 with divide ++, and
then divide is limited to 254 with <#=, the assignment form of the Limit Maximum operator. So, if
divide ++ resulted in 255, the next line, divide <#= 254 reduces its value back to 254. This prevents
the value of divide from rolling over to 0, which is important because divide gets divided into
clkfreq in a waitcnt command later in the repeat loop. If the P21 pushbutton is pressed instead of
P22, the divide variable is decremented with divide --, which subtracts 1 from divide. The #>=
assignment operator is used to make sure that divide never gets smaller than 1, again preventing it
from getting to 0.

After the if…elseif… statement checks the pushbutton states and either increments or decrements the
divide variable if one of the pushbuttons is pressed, it uses waitcnt(clkfreq/divide + cnt) to wait
for a certain amount of time. Notice that as divide gets larger, the time waitcnt waits gets smaller.
After the delay that’s controlled by the divide variable, pattern gets stored in outa with
outa[9..4] := pattern. Last of all, the pattern variable gets shifted right by 1 for the next time
through the loop.

Comparison Operations vs. Conditions
Comparison operators return true (-1) or false (0); when used in if and repeat blocks the specified
code executed if the condition is non-zero. This being the case, if ina[22] can be used instead of if
ina[22] == 1. The code works the same, but with less processing since the comparison operation
gets skipped.

When the button is pressed, the condition in if ina[22] == 1 returns -1 since ina[22] stores a 1
making the comparison true. Using just if ina[22] will still cause the code block to execute when the
button is pressed since ina[22] stores 1, which is still non-zero, causing the code block to execute.
When the button is not pressed, ina[22] stores 0, and ina[22] == 1 returns false (0). In either case,
the if statement’s condition is 0, so the code below either if ina[22] == 0 or if ina[22] gets
skipped.

 change if ina[22] == 1 …elseif ina[21] == 1 to if ina[22] …elseif ina[21]…, and
verify that the modified program still works.

Local Variables
While all the example objects in this lab have only used one method, objects frequently have more
than one method, and applications typically are a collection of several objects. Methods in
applications pass program control, and optionally parameters, back and forth between other methods
in the same object as well as methods in other objects. These features will all be studied in upcoming
labs. In preparation for working with multiple methods, let's look at how a method can create a local
variable.

Variables declared in an object’s VAR section are global to the object, meaning all methods in a given
object can use them. Each method in an object can also declare local variables for its own use. These
local variables only last as long as the method is being executed. If the method runs out of commands
and passes program control back to whatever command called it, the local variable name and memory
locations get thrown back in the heap for other local variables to use.

The two global variables in the ButtonShiftSpeed object can be replaced with local variables as
follows:

 Remove the VAR block (including its byte variable declarations).

Copyright © Parallax Inc. ● Fundamentals: I/O and Timing Basics v1.0 ● 12/7/2006 ● Page 20 of 29

 Add the pipe | symbol to the right of the method block declaration followed by the two
variable names separated by commas, then test the program verify it still functions properly.

PUB ShiftLedsLeft | pattern, divide

Aside from the fact that the pattern and divide variables are now local, meaning other methods in
the object could not use them; since our object has just one method this is of no consequence here.
There is one other difference. When we used the VAR block syntax, we had the option of defining our
global variables as byte, word, or long in size. However, local variables are automatically defined as
longs and there is no option for byte or word size local variables.

Timekeeping Applications
For clock and timekeeping applications, it’s important to eliminate all possible errors, except for the
accuracy of the crystal oscillator. Take a look at the two objects that perform timekeeping.
Assuming you have a very accurate crystal, the program on the left has a serious problem! The
problem is that each time the loop is repeated, the clock ticks elapsed during the execution of the
commands in the loop are not accounted for, and this unknown delay accumulates along with clkfreq
+ cnt. So, the number of seconds the seconds variable will be off by will grow each day and will be
significantly more than just the error introduced by the crystal’s rated +/- PPM.

The program on the right solves this problem with two additional variables: T and dT. A time
increment is set with dT := clkfreq which makes dT equal to one second with the precision of the
crystal. A particular starting time is marked with T := cnt. Then, inside the loop, it recalculates the
next cnt value that waitcnt will have to wait for with T += dT. This use of the add assignment
operator += allows us to create a precise offset from original marked value of T. With this system,
each new target value for waitcnt is exactly 1 second’s worth of clock ticks from the previous. It no
longer matters how many tasks get performed between waitcnt command executions, the program on
the right will never lose any clock ticks and maintain a constant 1 s time base that’s as good as the
signal that the Propeller chip is getting from the external crystal oscillator.

 Try running both objects. Without an oscilloscope, there should be no noticeable difference.

''File: TimekeepingBad.spin

CON

 _xinfreq = 5_000_000
 _clkmode = xtal1 + pll1x

VAR

 long seconds

PUB BadTimeCount

 dira[4]~~

 repeat
 waitcnt(clkfreq + cnt)
 seconds ++
 ! outa[4]

''File: TimekeepingGood.spin

CON

 _xinfreq = 5_000_000

 _clkmode = xtal1 + pll1x

VAR

 long seconds, dT, T

PUB GoodTimeCount

 dira[9..4]~~

 dT := clkfreq
 T := cnt

 repeat
 T += dT
 waitcnt(T)
 seconds ++
 outa[9..4] := seconds

Copyright © Parallax Inc. ● Fundamentals: I/O and Timing Basics v.1.0 ● 12/7/2006 ● Page 21 of 29

 Add a delay of 0.7 s to the end of each object (inside each repeat loop). The object on the left
will now repeat every 1.7 s; the one on the right should still repeat every 1 s.

Instead of a delay, imagine how many other tasks the Propeller chip could accomplish in each second
and still maintain an accurate time base!
Various multiples of a given time base can have different meanings and uses in different applications.
For example, these objects have seconds as a time base, but we may be interested in minutes and
hours. There are 60 seconds in a minute, 3,600 seconds in an hour and 86,400 seconds in a day.
Let’s say the application keeps a running count of seconds. A convenient way of determining
whether another minute has elapsed is by testing to divide seconds by 60 and see if there is a
remainder. The Modulus “//”operator returns the reminder of division problems. As the seconds
pass, seconds // 60 is 0 when seconds is 0, 60, 120, 180, and so on. The rest of the time, the
Modulus returns whatever is left over. For example, when seconds is 121, the result of seconds //
60 is 1. When seconds is 125, the result of seconds // 60 is 5, and so on.

This being the case, here’s an expression that increments a minutes variable every time another 60
seconds goes by.

 if seconds // 60 == 0
 minutes ++

Here’s another example with hours:

 if seconds // 3600 == 0
 hours ++

For every hour that passes, when minutes gets to 60, it should be reset to zero. Here is an example of
a nested if statement that expands on the previous minutes calculation:

 if seconds // 60 == 0
 minutes ++
 if minutes == 60
 minutes := 0

The TimeCounter object below uses synchronized timekeeping and a running total of seconds with
the modulus operator to keep track of seconds, minutes, hours, and days based on the seconds count.
The value of seconds is displayed in binary with the 6 LED circuits. Study this program carefully,
because it contains keys to this lab’s projects that increment a time setting based in different durations
of holding down a button. It also has keys to another project in which LEDs are blinked at different
rates without using multiple cogs. (When you use multiple cogs in later labs, it will be a lot easier!)

 Load TimeCounter.spin into EEPROM, and verify that it increments the LED count every
1 s.

 Modify the code so that the last command copies the value held by minutes into outa[9..4],
and verify that the LED display increments every minute.

''File: TimeCounter.spin

CON

 _xinfreq = 5_000_000
 _clkmode = xtal1 + pll1x

VAR

 long seconds, minutes, hours, days, dT, T

Copyright © Parallax Inc. ● Fundamentals: I/O and Timing Basics v1.0 ● 12/7/2006 ● Page 22 of 29

PUB GoodTimeCount

 dira[9..4]~~

 dT := clkfreq
 T := cnt

 repeat

 T += dT
 waitcnt(T)
 seconds++

 if seconds // 60 == 0
 minutes++
 if minutes == 60
 minutes := 0
 if seconds // 3600 == 0
 hours++
 if hours == 24
 hours := 0
 if seconds // 86400 == 0
 days++

 outa[9..4] := seconds

Eventually, the seconds variable will reach variable storage limitations. For example, when it gets to
2,147,483,647, the next value will be -2,147843,648, and after that, -2,147,843,647, -2,147,843,646,
and so on down to -2, -1. So, how long will it take for the seconds timer to get to 2,147,483,647?
The answer is 68 years. If this is still a concern for your application, consider resetting the second
counter every year.

Questions
1) How many processors does the PE Kit’s Propeller microcontroller have?
2) How much global RAM does the Propeller microcontroller have?
3) What’s the Propeller chip’s supply voltage? How does this relate to an I/O pin’s high and

low states?
4) Where does the Propeller chip store Spin code, and how is it executed?
5) How does executing Spin codes differ from executing assembly language codes?
6) What’s the difference between a method and an object?
7) What’s a top level object?
8) What do bits in the dira and outa registers determine?
9) Without optional arguments the repeat command repeats a block of code indefinitely. What

types of optional arguments were used in this lab, and how did they limit the number of loop
repetitions?

10) What Spin command used with waitcnt makes it possible to control timing without knowing
the Propeller chip’s system clock frequency in advance?

11) If commands are below a repeat command, how do you determine whether or not they will
be repeated in the loop?

12) What was the most frequent means of calculating a target value for the waitcnt command,
and what register does the waitcnt command compare this target value to?

13) What’s the difference between _xinfreq and _clkmode.
14) What does the phase-locked loop circuit do to the crystal clock signal?
15) Why is it so important to use a fraction of clkfreq instead of a constant value for delays?
16) Which clock signal will be more accurate, the Propeller’s internal RC clock or an external

crystal?

Copyright © Parallax Inc. ● Fundamentals: I/O and Timing Basics v.1.0 ● 12/7/2006 ● Page 23 of 29

17) What registers control I/O pin direction and output? If an I/O pin is set to input, what
register’s values will change as the application is running, and how are the values it returns
determined by the Propeller?

18) What’s the difference between dira/outa/ina syntax that refers to single bit in the register and
syntax that denotes a group of bits?

19) What indicator provides a convenient means of assigning a group of bit values to a
contiguous group of bits in a dira/outa/ina register?

20) How does an I/O pin respond if there is a 0 in its dira register bit and a 1 in its outa register
bit?

21) If bits in either dira or outa are not initialized, what is their default value at startup?
22) What assignment operators were introduced in this lab?
23) What comparison operators were used in this lab?
24) What’s the difference between the := and == operators?
25) Are comparison operators necessary for if conditions?
26) What are the two different scopes a variable can have in an object?
27) What are the three different variable sizes that can be declared? What number range can each

hold? Does the scope of a variable affect its size?
28) How does a method declare local variables? What character is required for declaring more

than one local variable?

Exercises
1) Write a single line of code that sets P8 through P12 output-high.
2) Write commands to set P9 and P13 through 15 to outputs. P9 should be made output-high,

and P13 through 15 should be low.
3) Write a single initialization command to set P0 through P2 to output and P3 through P8 to

input.
4) Write a repeat block that toggles the states of P8 and P9 ever 1/100 s. Whenever P8 is on,

P9 should be off, and visa versa.
5) Write a repeat loop that sets P0 through P7 to the opposite of the states sensed by P8 through

P15. You may want to consult the Propeller Manual’s list of assignment operators for the
best option.

6) Write a CON block to make the Propeller chip’s system clock run at 10 MHz.
7) Write code for a five second delay.
8) Write code that sets P5 through P11 high for 3 seconds, then sets P6, P8, and P10 low.

Assume the correct dira bits have already been set.
9) Write a method named LightsOn with a repeat loop that turns on P4 the first second, P5 the

second, P6 the third, and so on through P9. Assume that the I/O pin direction bits have not
been set. Make sure the lights stay on after they have all bee turned on.

10) Write a method that turns an LED connected to P27 on for 5 s if a pushbutton connected to
P0 has been pressed, even if the button is released before 5 s. Don’t assume I/O directions
have been set. Make sure to turn the P27 LED off after 5 s.

11) Write a second countdown method that displays on the P4 through P9 LEDs. It should count
down from 59 to 0 in binary.

12) Write a second countdown method that displays on the P4 through P9 LEDs. It should count
down from 59 to 0 in binary, over and over again, indefinitely.

13) Write a method named PushTwoStart that makes you press the buttons connected to P21 and
P23 at the same time to start the application. For now, the application can do as little as turn
an LED on and leave it on.

14) Write a method named PushTwoCountdown that makes you press the buttons connected to P21
and P23 at the same time to start the application. The application should count down from 59
to 0 using P9 through P4.

Copyright © Parallax Inc. ● Fundamentals: I/O and Timing Basics v1.0 ● 12/7/2006 ● Page 24 of 29

Projects
1) Connect red LEDs to P4 and P7, yellow LEDs to P5 and P8, and green LEDs to P6 and P9.

Assume that one set of LEDs is pointing both directions on the north south street, and the
other set is pointing both ways on the east west street. Write an non-actuated street controller
object (one that follows a pattern without checking to find out which cars are at which
intersections).

2) Repeat the previous project, but assume that the N/S street is busy, and defaults to green
while the E/W street has sensors that turn the light.

3) Use a single cog to make LEDs blink at different rates (this is much easier with multiple
cogs, as you will see in later labs). Make P4 blink at 1 Hz, P5 at 2 Hz, P6 at 3 Hz, P7 at 7 Hz,
P8 at 12 Hz and P9 at 13 Hz.

4) Buttons for setting alarm clock times typically increment or decrement the time slowly until
you have held the button down for a couple of seconds. Then, the time
increments/decrements much more rapidly. Alarm clock buttons also let you
increment/decrement the time by rapidly pressing and releasing the pushbutton. Write an
application that lets you increase or decrease the binary count for minutes (from 0 to 59) with
the P21 and P23 pushbuttons. As you hold the button, the first ten minutes increase/decrease
every ½ s, then if you continue to hold down the button, the minutes increase/decrease 6
times as fast. Use the P9 through P4 LEDs to display the minutes in binary.

5) Extend project 1 by modifying the object from project 1 so that it is a countdown timer that
gets set with the P21 and P23 buttons and started by the P22 button.

Question Solutions
1) Eight
2) 32 KB
3) The Propeller’s supply voltage is 3.3 V. When an I/O pin is high, the Propeller chip

internally connects the I/O pin to its 3.3 V supply, and when it’s low, it’s connected to GND
or 0 V.

4) Spin code is stored in the Propeller chip’s global RAM, and a cog running an interpreter
program fetches and executes the codes.

5) Instead of executing Spin codes that get fetched from global RAM and executed, machine
codes generated by assembly language get stored in a cog’s 2 KB of RAM, and are executed
directly by the cog.

6) There are a lot of ways to answer this. The most condensed and Propeller-centric answer
would be that a method is a block of code with a minimum of a declared access rule and
name; whereas, and object is a building block comprised of all the code in a .spin file. Every
object also contains one or more methods.

7) It’s the object that provides a starting point for a given application that gets loaded into the
Propeller chip’s RAM. Although it’s not required, top level objects often organize and
orchestrate the application’s objects.

8) Each bit in dira sets the direction (output or input) of an I/O pin for a given cog. Each bit in
outa sets the output state (on or off) for a given cog, provided the corresponding bit in the
dira register is set to output.

9) There were four different types of conditions. The number of repetitions was placed to the
right of the repeat command to specify how many times the loop gets repeated. The while
condition specified to keep repeating a loop while a condition is true. The until condition
was used to keep repeating code until a certain condition occurs. Finally, a variable was
incremented each time through a repeat loop, from a certain value, to a certain value.

10) clkfreq
11) They need to be below and indented from the repeat command to be part of the loop. The

next command following the repeat command that is at the same or less level of indentation

Copyright © Parallax Inc. ● Fundamentals: I/O and Timing Basics v.1.0 ● 12/7/2006 ● Page 25 of 29

is not part of the repeat loop, nor is any command that follows it, regardless of its
indentation.

12) The waitcnt command’s target value was typically calculated by adding some fraction of
clkfreq to the cnt register. Then, the waitcnt waits until the cnt register exceeds the waitcnt
value.

13) _xinfreq stores the input oscillator’s frequency; whereas, in this lab _clkmode was used to
define the Propeller chip’s crystal feedback and PLL multiplier settings. For more
information, look these terms up in the Propeller Manual.

14) It multiplies the frequency by a value. Multiplier options are 1, 2, 4, 8, or 16.
15) The clkfreq constant adjusts with the Propeller chip’s system clock; whereas, a constant

value used for delays will result in delays that change with the system clock settings.
16) An external crystal.
17) The dira and outa registers control direction and output state respectively. If an I/O pin is set

to input, the ina register’s values will update at runtime when an ina command is issued,
returning 1 or 0 for each bit depending voltage applied to the corresponding I/O pin.
Voltages applied to an I/O pin above 1.65 V cause a 1 to be returned. Voltages below 1.65 V
cause a 0 to be returned.

18) A single value in between the square brackets to the right of dira/outa/ina refers to a single
bit in the register. Two values separated by two dots refer to a contiguous group of bits.

19) %, the binary number indicator.
20) The I/O pin is set to input, so it only monitors the voltage applied to the pin and stores a 1 in

its ina bit if the voltage is above 1.65 V, or a 0 if it is below 1.65 V. As an input, the pin has
no effect on external circuits.

21) Zero.
22) Assign-Equals :=, Post-Set ~~, Post-Clear ~, Bitwise NOT !, Limit Maximum <#=, Limit

Minimum #>=, Pre- and Post-Increment ++, Pre- and Post-Decrement --, Assign Shift Right
>>=, and Assign Shift Left <<=.

23) Is Equal ==, Is Not Equal <>, Is Less Than <, Is Greater Than >, Is Equal or Less =<, Is Equal
or Greater =>.

24) := is Assign-equals; whereas == is the comparison Is Equal. The result of := assigns the
value of the operand on the right to the operand on the left. The result of == simply compares
two values, and returns -1 if they are equal and 0 if they are not.

25) No, they are not necessary, though they can be useful. In this lab, the value returned by ina
for a given bit was either 1 or 0, which worked fine for if blocks because the code would be
executed if the condition is non-zero, or not executed if it’s zero (-1 is non-zero).

26) Global and local. Global variables are declared in an object’s VAR section. Local variables
are only in use by a method as it executes.

27) The three sizes of variable are byte (0 to 255), word (0 to 65535) and long (-2,147,483,648 to
2,147,483,647). Local variables are automatically long-size, whereas global variables can be
declared as byte, word, or long.

28) A pipe | character is used to declare local variables to the right of the method declaration. To
the right of the pipe, more than one variable name may be declared, separated by commas.

Exercise Solutions
1) Solution:

outa[8..12] := dira[8..12] := %1111
2) Solution:

dira[9] := outa[9]:= 1
outa[13..15] := %000
dira[13..15] := %111

Copyright © Parallax Inc. ● Fundamentals: I/O and Timing Basics v1.0 ● 12/7/2006 ● Page 26 of 29

3) Solution:
dira[0..8] :=%111000000.

4) Solution:
outa[8]~~
outa[9]~
repeat
 !outa[8..9]
 waitcnt(clkfreq/100 + cnt)

5) Solution:
repeat
 outa[0..7]!= ina[8..15]

6) Solution:
 CON
 _xinfreq = 5_000_000
 _clkmode = xtal1 + pll2x
7) Solution:

waitcnt(clkfreq*5 + cnt)
8) Solution:

outa[5..11]~~
waitcnt(clkfreq*3 + cnt)
outa[5..11] := %1010101

9) Solution:
PUB LightsOn | counter
 dira[4..9] := %111111
 repeat counter from 4 to 9
 outa[counter] := 1
 waitcnt(clkfreq + cnt)
 repeat

10) Solution:
PUB method
 dira[27] := 1
 repeat
 if ina[0]
 outa[27]~~
 waitcnt(clkfreq*5 + cnt)
 outa[27] ~

11) Solution:
PUB SecondCountdown
 dira[9..4]~~
 repeat outa[9..4] from 59 to 0
 waitcnt(clkfreq + cnt)

12) Solution:
PUB SecondCountdown
 dira[9..4]~~
 repeat
 repeat outa[9..4] from 59 to 0
 waitcnt(clkfreq + cnt)

13) Solution:
PUB PushTwoStart
 dira[4]~~
 repeat until ina[23..21] == %101
 outa[4]~~

14) Solution:
PUB PushTwoCountdown
 dira[9..4]~~
 repeat until ina[23..21] == %101
 outa[4]~~
 repeat outa[9..4] from 59 to 0
 waitcnt(clkfreq + cnt)

Copyright © Parallax Inc. ● Fundamentals: I/O and Timing Basics v.1.0 ● 12/7/2006 ● Page 27 of 29

Project Solutions
1) Example solution:

''File: NonActuatedStreetlights.spin
''A high speed prototype of a N/S E/W streetlight controller.

PUB StreetLights

 dira[9..4]~~ ' Set LED I/O pins to output

 repeat ' Main loop

 outa[4..9] := %001100 ' N/S green, E/W red
 waitcnt(clkfreq * 8 + cnt) ' 8 s
 outa[4..9] := %010100 ' N/S yellow, E/W red
 waitcnt(clkfreq * 3 + cnt) ' 3 s
 outa[4..9] := %100001 ' N/S red, E/W green
 waitcnt(clkfreq * 8 + cnt) ' 8 s
 outa[4..9] := %100010 ' N/S red, E/W yellow
 waitcnt(clkfreq * 3 + cnt) ' 3 s

2) Example Solution:
''File: ActuatedStreetlightsEW.spin
''A high speed prototype of a N/S E/W streetlight controller.

PUB StreetLightsActuatedEW

 dira[9..4]~~ ' Set LED I/O pins to output

 repeat ' Main loop

 outa[4..9] := %001100 ' N/S green, E/W red
 repeat until ina[21] ' Car on E/W street
 waitcnt(clkfreq * 3 + cnt) ' 8 s
 outa[4..9] := %010100 ' N/S yellow, E/W red
 waitcnt(clkfreq * 3 + cnt) ' 3 s
 outa[4..9] := %100001 ' N/S red, E/W green
 waitcnt(clkfreq * 8 + cnt) ' 8 s
 outa[4..9] := %100010 ' N/S red, E/W yellow
 waitcnt(clkfreq * 3 + cnt) ' 3 s

3) Example solution:
''File: LedFrequenciesWithoutCogs.spin
''Experience the discomfort of developing processes that could otherwise run
''independently in separate cogs. In this example, LEDs blink at 1, 2, 3, 5,
''7, and 11 Hz.

CON

 _xinfreq = 5_000_000 ' 5 MHz external crystal
 _clkmode = xtal1 + pll16x ' 5 MHz crystal multiplied → 80 MHz

 T_LED_P4 = 2310 ' Time increment constants
 T_LED_P5 = 1155
 T_LED_P6 = 770
 T_LED_P7 = 462
 T_LED_P8 = 330
 T_LED_P9 = 210

PUB Blinks | T, dT, count

 dira[9..4]~~ ' Set LED I/O pins to output

 dT := clkfreq / 4620 ' Set time increment
 T := cnt ' Mark current time

Copyright © Parallax Inc. ● Fundamentals: I/O and Timing Basics v1.0 ● 12/7/2006 ● Page 28 of 29

 repeat ' Main loop

 T += dT ' Set next cnt target
 waitcnt(T) ' Wait for target

 if ++count == 2310 ' Reset count every 2310
 count := 0

 ' Update each LED state at the correct count.
 if count // T_LED_P4 == 0
 !outa[4]
 if count // T_LED_P5 == 0
 !outa[5]
 if count // T_LED_P6 == 0
 !outa[6]
 if count // T_LED_P7 == 0
 !outa[7]
 if count // T_LED_P8 == 0
 !outa[8]
 if count // T_LED_P9 == 0
 !outa[9]

4) Example solution:
''File: MinuteSet.spin
''Emulates buttons that set alarm clock time.

PUB SetTimer | counter, divide

 dira[9..4]~~ ' Set LED I/O pins to output

 repeat ' Main loop

 'Delay for 1 ms.
 waitcnt(clkfreq/1000 + cnt) ' Delay 1 ms

 {If a button is pressed...
 NOTE: Resetting the counter to -1 makes it possible to rapidly press
 and release the button and advance the minute display without the any
 apparent delay.}
 if ina[21] or ina[23] ' if a button is pressed
 counter++ ' increment counter
 else ' otherwise
 counter := -1 ' set counter to -1

 'Reset minute overflows
 if outa[9..4] == 63 ' If 0 rolls over to 63
 outa[9..4] := 59 ' reset to 59
 elseif outa[9..4] == 60 ' else if 59 increments to 60
 outa[9..4] := 0 ' set to 0

 'Set counter ms time slice duration
 if counter > 2000 ' If counter > 2000 (10 increments)
 divide := 50 ' 50 ms between increments
 else ' otherwise
 divide := 200 ' 200 ms between increments

 'If one of the ms time slices has elapsed
 if counter // divide == 0 ' if a time slice has elapsed
 if ina[21] ' if P21 pushbutton is pressed
 outa[9..4]++ ' increment outa[9..4]
 elseif ina[23] ' else if P23 pushbutton is pressed
 outa[9..4]-- ' decrement outa[9..4]

Copyright © Parallax Inc. ● Fundamentals: I/O and Timing Basics v.1.0 ● 12/7/2006 ● Page 29 of 29

5) Example solution:
''File: SecondCountdownTimer.spin
''Emulates buttons that set alarm clock time.

PUB SetTimerWiCountdown | counter, divide, T

 dira[9..4]~~ ' Set LED I/O pins to output
 repeat ' Main loop

 repeat until ina[22] ' Break out if

 'Delay for 1 ms.
 waitcnt(clkfreq/1000 + cnt) ' Delay 1 ms

 {If a button is pressed...
 NOTE: Resetting the counter to -1 makes it possible to rapidly press
 and release the button and advance the minute display without the any
 apparent delay.}
 if ina[21] or ina[23] ' if a button is pressed
 counter++ ' increment counter
 else ' otherwise
 counter := -1 ' set counter to -1

 'Reset minute overflows
 if outa[9..4] == 63 ' If 0 rolls over to 63
 outa[9..4] := 59 ' reset to 59
 elseif outa[9..4] == 60 ' else if 59 increments to 60
 outa[9..4] := 0 ' set to 0

 'Set counter ms time slice duration
 if counter > 2000 ' If counter > 2000 (10 increments)
 divide := 50 ' 50 ms between increments
 else ' otherwise
 divide := 200 ' 200 ms between increments

 'If one of the ms time slices has elapsed
 if counter // divide == 0 ' if a time slice has elapsed
 if ina[21] ' if P21 pushbutton is pressed
 outa[9..4]++ ' increment outa[9..4]
 elseif ina[23] ' else if P23 pushbutton is pressed
 outa[9..4]-- ' decrement outa[9..4]

 T := cnt ' Mark the time
 repeat while outa[9..4] ' Repeat while outa[9..4] is not 0
 T += clkfreq ' Calculate next second's clk value
 waitcnt(T) ' Wait for it...
 outa[9..4]-- ' Decrement outa[9..4]

Tech Support Resources
Parallax Inc. offers several avenues through which to gain free technical support services:

• Email: support@parallax.com
• Fax: (916) 624-8006
• Telephone: Toll free in the U.S: (888) 99-STAMP; or (916) 624-8333, between the hours of

7:00 am and 5:00 pm Pacific time.
• Forums: http://forums.parallax.com/forums/. Here you will find an active forum dedicated to

the Propeller chip, frequented by both Parallax customers and employees.

