

599 Menlo Drive, Suite 100
Rocklin, California 95765, USA
Office: (916) 624-8333
Fax: (916) 624-8003

Sales:sales@parallax.com
Technical: support@parallax.com
Web Site: www.parallax.com

Copyright © Parallax Inc. ● PE Lab: Objects v1.0 ● 2/15/2007 ● Page 1 of 45

Objects
PROPELLER EDUCATION KIT LAB SERIES

Introduction
In the first three labs (Setup and Testing, I/O and Timing, and Methods and Cogs), all the application
code examples have been individual objects. Applications are typically organized into multiple
objects, and each object does a particular job. Every application has a top level object, which is the
object where the code execution starts. All the example objects in the preceding labs have been top
level objects, but they have not made use of any other objects.

Top level objects typically declare and call methods in one or more other objects. Many of these
objects are designed to simplify application development. For example, some are collections of
useful methods that are published so that common coding tasks don’t have to be done “from scratch.”
Other objects manage processes that get launched into other cogs. They take care of most of the tasks
introduced in the Methods and Cogs lab, including declaring stack space, tracking which cog the
process got launched into, and so on. These objects that manage cogs also have methods for starting
and stopping the processes.

Useful objects that can be incorporated into your application are available from a number of sources,
including the Propeller Library (included with the Propeller Tool software), the web Propeller Object
Exchange, and some can also be found on the Propeller Chip forum. Each object typically has
documentation that explains how to incorporate it into your application along with an example top
level file that uses the object. In addition to using pre-written objects, you may find yourself wanting
to modify one, or write a custom object for a particular group of tasks that doesn’t already have an
object.

This lab guides you through writing a variety of objects and incorporating them into your top level
objects. Some of the objects are just collections of useful methods, while others manage processes
that get launched into cogs. Some of the objects will be written from scratch, and others from the
Propeller Library will be used as resources. The example applications will guide you through how to:

• Call methods in other objects
• Use objects that launch processes into other cogs
• Write code that calls an object’s methods based on its documentation
• Write object documentation and schematics
• Use objects from the Propeller Object library
• Access values and variables by their memory addresses
• Use objects to launch cogs that read and/or update the parent object’s variables.

Prerequisites
Please complete the Setup and Testing, I/O and Timing, and Methods labs before continuing.

Copyright © Parallax Inc. ● PE Lab: Objects v1.0 ● 2/15/2007 ● Page 2 of 45

Equipment, Parts, Schematic
Although the circuit is the same as the previous three labs, there are a few twists. First, the schematic
shown in Figure 1 was drawn using the Parallax font and the Propeller Tool software’s character
chart, which is an important component of documenting objects. Second, some of the coding
examples allow you to monitor and control elements of the circuit from your PC with HyperTerminal,
which will communicate with the Propeller chip via the Propeller Plug.

Figure 1: Schematic (drawn with the Propeller Tool software)

Method Call Review
The ButtonBlink object below is an example from the Methods and Cogs lab. Every time you press
and release the pushbutton connected to P23, the object measures the approximate time the button is
held down, and uses it to determine the full blink on/off period, and blinks the LED ten times.
(Button debouncing is not required with the pushbuttons included in the PE kit.) The object
accomplishes these tasks by calling other methods in the same object. Code in the Main method calls
the ButtonTime method to get the time the button is held down. When ButtonTime returns a value, the
Blink method gets called, with one of the parameters being the result of the ButtonTime measurement.

 Load ButtonBlink into the Propeller chip and test to make sure you can use the P23
pushbutton to set the P4 LED blink period.

Copyright © Parallax Inc. ● PE Lab: Objects v1.0 ● 2/15/2007 ● Page 3 of 45

'' ButtonBlink.spin

PUB Main | time

 Repeat

 time := ButtonTime(23)
 Blink(4, time, 10)

PUB Blink(pin, rate, reps)

 dira[pin]~~
 outa[pin]~

 repeat reps * 2
 waitcnt(rate/2 + cnt)
 !outa[pin]

PUB ButtonTime(pin) : dt | t1, t2

 repeat until ina[pin]
 t1 := cnt
 repeat while ina[pin]
 t2 := cnt
 dt := t2 - t1

Calling Methods in Other Objects with Dot Notation
The ButtonBlink object’s ButtonTime and Blink methods provide a simple example of code that
might be useful in a number of different applications. These methods can be stored in a separate
object file, and then any object that needs to blink an LED or measure a pushbutton press can access
these methods by following two steps:

1) Declare the object in an OBJ code block, and give the object’s filename a nickname.
2) Use ObjectNickname.MethodName to call the object’s method.

 The Propeller Manual uses the term “symbolic reference” or “reference” instead of nickname.

Figure 2 shows an example of how this works. The ButtonTime and Blink methods have been moved
to an object named ButtonAndBlink. To get access to the ButtonAndBlink object’s public methods,
the DotNotationExample object has to start by declaring the ButtonAndBlink object and giving it a
nickname. These object declarations are done in the DotNotationExample object’s OBJ code block.
The declaration PbLed : "ButtonAndBlink" gives the nickname PbLed to the ButtonAndBlink object.

The PbLed declaration makes it possible for the DotNotationExample object to call methods in the
ButtonAndBlink object using the notation ObjectNickname.MethodName. So, DotNotationExample
uses time := PbLed.ButtonTime(23) to call ButtonAndBlink’s ButtonTime method, pass it the
parameter 23, and assign the returned result to the time variable. DotNotationExample also uses the
command PbLed.Blink(4, time, 20) to pass 4, the value stored in the time variable, and 20 to
ButtonAndBlink’s Blink method.

 File Locations: An object has to either be in the same folder with the object that’s declaring it, or in the same
folder with the Propeller Tool .exe file. Objects stored with the Propeller Tool are commonly referred to as
library objects.

Copyright © Parallax Inc. ● PE Lab: Objects v1.0 ● 2/15/2007 ● Page 4 of 45

Figure 2: Calling Methods in Another Object with Dot Notation

 Load the DotNotationExample into the Propeller chip. If you are hand entering this code,
make sure to save both files in the same folder. Also, the ButtonAndBlink object’s filename
must be ButtonAndBlink.spin.

 Verify that the program does the same job as the previous example object (ButtonBlink).
 Follow the steps in DotNotationExample and make sure it’s clear how ButtonAndBlink gets a

nickname in the OBJ section, and how that nickname is then used by DotNotationExample to
call methods within the ButtonAndBlink object.

 Compare DotNotationExample.spin to the previous example object (ButtonBlink).

Object Organization
Objects can declare objects that can in turn declare other objects. It’s important to be able to examine
the interrelationships between parent objects, their children, grandchildren, and so on. There are a
couple of ways to examine these object family trees. First, let’s try viewing the relationships in the
Object Info window with the Propeller Tool’s Compile Current feature:

 Click the Propeller Tool’s Run menu, and select Compile Current → View Info (F8).

Notice that the object hierarchy is shown in the Object Info window’s top-left corner. In this
windowpane, you can single click each folder to see how much memory it occupies in the Propeller
Chip’s global RAM. You can also double-click each folder in the Object Info window to open the
.spin file that contains the object code. Since DotNotationExample declared ButtonAndBlink, the
ButtonAndBlink code becomes part of the DotNotationExample application, which is why it appears
to have more code than ButtonAndBlink in the Object Info window even though it has much less
actual typed code.

'' File: ButtonAndBlink.spin
'' Example object with two methods

PUB ButtonTime(pin): delta | time1, time2

 repeat until ina[pin] == 1
 time1 := cnt
 repeat until ina[pin] == 0
 time2 := cnt
 delta := time2 - time1

PUB Blink(pin, rate, reps)

 dira[pin]~~
 outa[pin]~

 repeat reps * 2
 waitcnt(rate/2 + cnt)
 !outa[pin]

''File: DotNotationExample.spin

OBJ

 PbLed : "ButtonAndBlink"

PUB Main | time

 repeat

 time := PbLed.ButtonTime(23)

 PbLed.Blink(4, time, 20)

Method calls with
ObjectNickname.MethodName

Object
declaration

Copyright © Parallax Inc. ● PE Lab: Objects v1.0 ● 2/15/2007 ● Page 5 of 45

Figure 3: Object Info Window

After closing the Object Info window, the same Object View pane will be visible in the upper-left
corner of the Propeller tool (see Figure 4). The objects in this pane can be opened with a single-click.
The file folder icons can also be right-clicked to view a given object in documentation mode. Left
click the folder icon to return to Full Source view mode.

Figure 4: Propeller Tool with Object View (Upper-Left Windowpane)

Copyright © Parallax Inc. ● PE Lab: Objects v1.0 ● 2/15/2007 ● Page 6 of 45

Objects that Launch Processes into Cogs
In the Methods Lab, it took several steps to write a program that launches a method into a cog. First,
additional variables had to be declared to give the cog stack space and track which cog is running
which process before the cognew or cogstart commands could be used. Also, a variable that stored
the cog’s ID was needed to pick the right cog if the program needed to stop a given process.

Here is a top file that declares two objects, named Button and Blinker. The Blinker object has a
method named Start that takes care of launching its Blink method into a new cog. All this top level
object has to do is call the Blinker object’s Start method.

{{
Top File: CogObjectExample.spin
Blinks an LED circuit for 20 repetitions. The LED
blink period is determined by how long the P23 pushbutton
is pressed and held.
}}

OBJ

 Blinker : "Blinker"
 Button : "Button"

PUB ButtonBlinkTime | time

 repeat

 time := Button.Time(23)
 Blinker.Start(4, time, 20)

Unlike the DotNotationExample object, you won’t have to wait for 20 LED blinks before pressing the
button again to change the blink rate (for the next 20 blinks). That’s because the Blinker object’s
Start method automatically stops any process it’s currently running before launching the new
process. So, as soon as the button measurement gets taken with Button.Time(23), the Blinker.Start
method call stops any process (cog) that it might already be running before it launches the new
process.

 If you are using the pre-written .spin files that accompany this PDF, they will already all be in
the same folder. If you are hand entering code, make sure to hand enter and save all three
objects in the same folder. The objects that will have to be saved are CogObjectExample
(above), and Blinker , and Button (both below).

 Load CogObjectExample into the Propeller Chip.
 Try pressing and releasing the P23 pushbutton so that it makes the LED blink slowly.
 Before the 20th blink, press and release the P23 pushbutton rapidly. The LED should

immediately start blinking at the faster rate.

Again, the reason the LED will start blinking immediately is because the Blinker object automatically
launched the LED blinking process into a new cog. This leaves Cog 0 free to repeatedly monitor the
pushbutton for the next press/release.

Copyright © Parallax Inc. ● PE Lab: Objects v1.0 ● 2/15/2007 ● Page 7 of 45

Inside the Blinker Object
Objects that launch processes into cogs are typically written to take care of most cog record-keeping.
Then, all a parent object has to do is declare the object, and then launch the process by calling the
object’s Start method, or halt it by calling the object’s Stop method. For example, the Blinker
example object below has the necessary variable array for the cog’s stack operations while executing
the Blink method. It also has another variable named cog for keeping track of into which cog it
launched its Blink method.

The Blinker object also has the Start and Stop methods for launching the now familiar Blink method
into a new cog and stopping it again. When the Start method launches the Blink method into a new
cog, it copies the cog ID into the cog variable. The value it returns in the success variable is the cog
ID + 1, which the parent object can treat as a Boolean value. So long as this value is non-zero, it
means the process launched successfully. If the value is zero, it means the cog was not successfully
launched. This typically happens when all eight of the Propeller chip’s cogs are already in use.

The object’s Stop method shuts the process down, using the cog variable, which the object uses to
store the ID of the cog it launched the Blink method into.

{{
File: Blinker.spin
Example cog manager for a blinking LED process.

SCHEMATIC
───────────────────────────────
 100 ω LED
 pin ──────────┐

 GND
───────────────────────────────
}}

VAR
 long stack[10] 'Cog stack space
 byte cog 'Cog ID

PUB Start(pin, rate, reps) : success
{{Start new blinking process in new cog; return True if successful.

Parameters:
 pin - the I/O connected to the LED circuit → see schematic
 rate - On/off cycle time is defined by the number of clock ticks
 reps - the number of on/off cycles
}}
 Stop
 success := (cog := cognew(Blink(pin, rate, reps), @stack) + 1)

PUB Stop
''Stop blinking process, if any.

 if Cog
 cogstop(Cog~ - 1)

PUB Blink(pin, rate, reps)
{{Blink an LED circuit connected to pin at a given rate for reps repetitions.

Parameters:

Copyright © Parallax Inc. ● PE Lab: Objects v1.0 ● 2/15/2007 ● Page 8 of 45

 pin - the I/O connected to the LED circuit → see schematic
 rate - On/off cycle time is defined by the number of clock ticks
 reps - the number of on/off cycles
}}

 dira[pin]~~
 outa[pin]~

 repeat reps * 2
 waitcnt(rate/2 + cnt)
 !outa[pin]

The Start and Stop methods shown in this object are the recommended approach for objects that
manage cogs. They were copied verbatim from the Propeller Manual’s tutorial section, and then
updated to fit the slightly different Blink method. The Start method’s parameter list should have all
the parameters the process will need to get launched into a cog. Note that these values are passed to
the object’s Blink method via a call in the cognew command.

 Why does the Start method call the Stop method? In the event that the object had already started a
process, the Stop method call shuts that process down before launching a new process.

CogObjectExample also uses the Button object, which at this time has just one method, but it can be
expanded into a collection of useful methods. Note that this version of the Button object doesn’t
launch any new processes into cogs, so it doesn’t have a Start or Stop method.

Everything the Button object does is done in the same cog as the object that calls it. This object could
be modified in several different ways. For example, other button-related methods could be added.
The object could also be modified to work with a certain button or group of buttons. It could also
have an Init or Config method added to set the object up to automatically monitor a certain button or
group of buttons. The object could also be modified to monitor these buttons in a separate cog, but in
that case, Start and Stop methods should be added.

'' File: Button.spin
'' Beginnings of a useful object.

PUB Time(pin) : delta | time1, time2

 repeat until ina[pin] == 1
 time1 := cnt
 repeat until ina[pin] == 0
 time2 := cnt
 delta := time2 - time1

Documentation Comments
Figure 5 shows the first part of the Blinker object displayed in documentation mode. To view the
object in this mode, make sure it’s the active tab (click the tab with the Blinker filename), then click
the Documentation radio button just above the code. Remember from the I/O and Timing Lab that
single line documentation comments are preceded by two apostrophes: ''comment, and that
documentation comments occupying more than one line are started and ended with double braces:
{{comments}}. Take a look at the documentation comments in Full Source mode, and compare them
to the comments in Documentation mode.

Copyright © Parallax Inc. ● PE Lab: Objects v1.0 ● 2/15/2007 ● Page 9 of 45

Documentation mode automatically adds some information above and beyond what’s in the
documentation comments. First, there’s the Object Interface information which is a list of the
object’s public method declarations, including the method name, parameter list, and return variable
name, if any. This gives the programmer an “at a glance” view of the object’s methods. With this in
mind, it’s important to choose descriptive names for an object’s method and its parameters.
Documentation mode also lists how much memory the object's use would add to a program and how
much it takes in the way of variables. These, of course, are also important “at a glance” features.

Figure 5: Documentation View

The Documentation view mode also inserts each method declaration (without local variables that are
not used as parameters or return variable aliases). Notice how documentation comments below the
method declaration also appear, and how they explain what the method does, what information its
parameters should receive, and what it returns. Each public method’s documentation should have
enough information for a programmer to use it without switching back to Full Source view to reverse
engineer the method and try to figure out what it does. This is another good reason to pick your
method and parameter names carefully, because they will help make your documentation comments
more concise. Below each public method declaration, explain what the method does with
documentation comments. Then, explain each parameter, starting with its name and include any
necessary information about the values the parameter has to receive. Do the same thing for the return
parameter as well.

 Try adding a block documentation comment just below the CogObjectExample object’s
ButtonBlinkTime method, and verify that the documentation appears below the method
declaration in Documentation view mode.

Copyright © Parallax Inc. ● PE Lab: Objects v1.0 ● 2/15/2007 ● Page 10 of 45

Figure 6: More Documentation View

Drawing Schematics
The Parallax font has symbols built in for drawing schematics, and they should be used to document
the circuits that objects are designed for. The Character Chart tool for inserting these characters into
an object is shown in Figure 7. In addition to the symbols for drawing schematics, it has symbols for
timing diagrams , math operators ± + - × ÷ = ≈ √ ¹ ² ³,and Greek symbols for
quantities and measurements ω µ δ σ π.

 Click Help and select View Character Chart.
 Click the character chart’s symbolic Order button
 Place your cursor in a commented area of an object.
 Click various characters in the Character Chart, and verify that they appear in the object.

Figure 7: Propeller Tool Character Chart

Top level files should also have schematics so that the circuit the code is written for can be built and
tested. For example, the schematic shown in Figure 8 can be added to CogObjectExample. The
pushbutton can be a little tricky. The character chart is shown in Figure 8, displayed in the standard
order (click the Standard Order radio button). In this order, character 0 is the top left, character 1, the

Copyright © Parallax Inc. ● PE Lab: Objects v1.0 ● 2/15/2007 ● Page 11 of 45

next one over from top-left, and so on, all the way down to character 255 on the bottom-right. Here is
a list of characters you will need:

 Pushbutton – 19, 23, 24, 27, 144, 145, 152, 186, 188
 LED – 19, 24, 36, 144, 145, 158, 166, 168, 169, 189, 190

 Try adding the schematic shown in Figure 8 to your copy of CogObjectExample.

Figure 8: Drawing Schematics with the Character Chart

Public vs. Private methods
The Blinker object is currently written so that its parent object can call either its Start or Blink
methods. For this particular object, it’s useful because there are times when the programmer might
not want to allow the 20 LED blinks to be interrupted. In that case, instead of calling the Start
method, the parent object can simply call the Blink method.

 Modify a copy of CogObjectExample so that it calls the Blinker object’s Blink method
instead of its Start method.

The modified version will not let you interrupt the LED blinking to restart at a different rate. That’s
because all the code now gets executed in the same cog; whereas the unmodified version allows you
to call the Start method at any time since the LED blinking happens in a separate cog.

Some objects are written so that they have public methods that other objects can call, and private
methods, which can only be called from another method in the same object. Private methods tend to
be ones that help the object do its job, but are not intended to be called by other objects. For example,
sometimes an intricate task is separated into several methods. A public method might receive
parameters and then call the private methods in a certain sequence. Especially if calling those
methods in the wrong sequence could lead to undesirable results, those other methods should be
private.

Copyright © Parallax Inc. ● PE Lab: Objects v1.0 ● 2/15/2007 ● Page 12 of 45

With the Blinker object’s Blink method, there’s no actual reason to make it private aside from
examining what happens when a parent object tries to call another object’s private method.

 Change the Blinker object’s Blink method from PUB to PRI.
 Try to run the modified copy of CogObjectExample, and observe the error message. This

demonstrates that the Blink method cannot now be accessed by another object since it’s
private.

 Run the unmodified copy (which only calls the public Start method, not the private Blink
method), and verify that it still works properly. This demonstrates how the now private Blink
method can still be accessed from within the same (Blinker) object by its Start method.

Multiple Object Instances
Spin objects that launch and manage one or more cogs for a given process are typically written for
just one copy of the process. If the application needs more than one copy of the process running
concurrently, the application simply declares more than one copy of the object. For example, the
Propeller chip can control a television display with one cog, but each TV object only controls one
television display. If the application needs to control more than one television, it declares more than
one copy of the TV object.

Multiple object copies? No Problem!

There is no code space penalty for declaring multiple objects. The Propeller Tool’s compiler optimizes so that
only one instance of the code is executed by all the copies of the object. The only penalty for declaring more
than one copy of the same object is that there will be more than one copy of the global variables the object
declares, one set for each object. Since roughly the same number of extra variables would be required for a
given application to do the same job without objects, it’s not really a penalty.

The MultiCogObjectExample object below demonstrates how multiple copies of an object that
manages a process can be launched with an object array. Like variables, objects can be declared as
arrays. In this example, six copies of the Blinker object are declared in the OBJ block with Blinker[6]
: Blinker. The six copies of Blinker can also be indexed the same way variable arrays are, with
Blinker[0], Blinker[1], and so on, up through Blinker[5]. In MultiCogObjectExample, a repeat
loop increments an index variable, so that Blinker[index].Start… calls each successive object’s
Start method.

The MultiCogObjectExample object is functionally equivalent to the Methods and Cogs lab’s
CogStartStopWithButton object. When the program is run, each successive press/release of the P23
pushbutton launches new cogs that blink successive LEDs (connected to P4 through P9) at rates
determined by each button press. The first through sixth button presses launch new LED blinking
processes in new cogs, and the seventh through twelfth presses successively stop each LED blinking
cog in reverse order.

 Load the MultiCogObjectExample object into the Propeller chip.
 Press and hold the P23 pushbutton six successive times (each with a different duration) and

verify that six cogs were launched.
 Press and release the P23 pushbutton six more times and verify that each LED blinking

process halts in reverse order.

Copyright © Parallax Inc. ● PE Lab: Objects v1.0 ● 2/15/2007 ● Page 13 of 45

''Top File: MultiCogObjectExample.spin

OBJ

 Blinker[6] : "Blinker"
 Button : "Button"

PUB ButtonBlinkTime | time, index

 repeat

 repeat index from 0 to 5
 time := Button.Time(23)
 Blinker[index].Start(index + 4, time, 1_000_000)

 repeat index from 5 to 0
 Button.Time(23)
 Blinker[index].Stop

Library Objects
As mentioned earlier, code in an object can declare another object, so long as either:

• The two objects are in the same folder
• The object being declared is in the same folder as the Propeller Tool software

The objects in the same folder with the Propeller Tool software are called Propeller Library objects.
To view the contents of the Propeller Library:

 Click the dropdown menu between the upper and middle left windowpanes shown in Figure 9
and select Propeller Library. The Propeller Library’s objects will appear in the lower left
windowpane.

Figure 9: Using the FullDuplexSerial object to Display a Test Message in HyperTerminal

One of the objects in the Propeller Library that will be useful for this and other PE kit labs is the
FullDuplexSerial object. True to its name, this object communicates with other devices using full
duplex serial communication. Full duplex means that two channels of serial communication

Copyright © Parallax Inc. ● PE Lab: Objects v1.0 ● 2/15/2007 ● Page 14 of 45

(outbound and inbound) can occur simultaneously. One convenient and readily available device that
communicates with full duplex serial is your PC. The HelloFullDuplexSerial object shown in Figure
9 uses the FullDuplexSerial object to send messages a program called HyperTerminal that’s common
to most Windows PCs.

Notice in Figure 9 that the folder icon next to FullDuplexSerial in the Propeller Tool’s upper left
Object View windowpane is blue instead of yellow. This indicates that it’s a file that resides in the
Propeller Library. You can also see these files by using Windows Explorer to look in the Propeller
Tool software’s folder. Assuming a default install, the path would be: C:\Program Files\Parallax
Inc\Propeller Tool v1.0.

 Serial to USB with the Propeller Plug: In the case of the PE Kit, the serial communication occurs between
the Propeller chip and the Propeller Plug. The Propeller Plug converts the serial signals to USB signals, and
sends them to the PC.

When using a library object, the first task is to examine its object interface to find out what methods
can be used.

 Double-click FullDuplexSerial in the Propeller Tool’s lower left explorer pane, which should
show the contents of the Propeller Library.

 When the Propeller Tool opens the FullDuplexSerial object, click the Documentation radio
button so that the view resembles Figure 10.

 Check the list of methods in the Object “FullDuplexSerial” Interface section.
 Scroll down and find the documentation for the start and str methods, and examine them.

They will be used in the next example object.
.
Figure 10: FullDuplexSerial Object Documentation Views

The HelloFullDuplexSerial object below declares the FullDuplexSerial object, giving it the nickname
Debug. Then, it calls the FullDuplexSerial object’s start method with the command
Debug.start(31, 30, 0, 57600). According to the documentation, this sets the parameter's rxpin to

Copyright © Parallax Inc. ● PE Lab: Objects v1.0 ● 2/15/2007 ● Page 15 of 45

Propeller I/O pin 31, txpin to 30, mode to 0, and baudrate to 57600. After that, a repeat loop sends
the same text message to the HyperTerminal once every second. The Debug.str method call is what
transfers the "This is a test message!" string to the FullDuplexSerial object’s buffer. After that,
FullDuplexSerial takes care of sending each successive character in the string to the PC using serial
(EIA232) communication signaling.

''HelloFullDuplexSerial.spin
''Test message to HyperTerminal.

CON

 _clkmode = xtal1 + pll16x
 _xinfreq = 5_000_000

OBJ

 Debug: "FullDuplexSerial"

PUB TestMessages

 ''Send test messages and to HyperTerminal.

 Debug.start(31, 30, 0, 57600)

 repeat
 Debug.str(string("This is a test message!", 10, 13))
 waitcnt(clkfreq + cnt)

Let’s take a closer look at Debug.str(String("This is a test message!", 10, 13)). Debug.str
calls the FullDuplexSerial object’s str method. The method declaration for the str method indicates
that the parameter it expects to receive should be a string pointer. At compile, the string directive
string("This is a test message!") stores the values that correspond to the characters in the text
message in the Propeller chip’s program memory, appended with a zero to make a zero-terminated
string. Although the str method’s documentation doesn’t say so (It really should!), it expects a zero-
terminated string so that it can transmit characters until it detects a zero. At runtime, the string
directive returns the starting address of the string. Debug.str passes this parameter to the
FullDuplexSerial object’s str method. The str method sends characters until it fetches the zero
terminator.

 Line Feed and Carriage Return: 10 is line feed, which puts the HyperTerminal’s cursor on the next line, and
13 is carriage return, which moves it back to the leftmost position on the line.

You can see where the string gets stored in the program with the Object Info window.

 Open HelloFullDuplexSerial and view it with the Object Info window (F8).
 Look for the text in the rightmost column, 3rd and 4th lines. The hexadecimal ASCII codes

occupy memory addresses 0038 through 0050 with the 0 terminator at address 51.

Copyright © Parallax Inc. ● PE Lab: Objects v1.0 ● 2/15/2007 ● Page 16 of 45

Figure 11: Finding a Text String in Memory

Setting up HyperTerminal
No additional physical connections need to be made for HyperTerminal, as we will be using the same
port with which we are programming the Propeller chip, relying upon those circuits built in the Setup
and Testing lab

For the Propeller and HyperTerminal to communicate, they both have to be set to use the same serial
communication settings. These settings determine the signaling and its timing. The
HelloFullDuplexSerial configures the FullDuplexSerial object for a baud rate of 57600 bits per
second. Other important details for configuring HyperTerminal are that FullDuplexSerial is designed
to communicate with 8 data bits, 1 stop bit, no parity, and no flow control. Here’s how to configure
HyperTerminal to speak this particular serial communication dialect.

 Start in the Propeller Tool. Press
F7, and make a note the COM port
number shown in the Information
window.

Most PCs with Windows 2000 or XP have HyperTerminal preinstalled with other Windows
“Accessories”. Follow these steps to set up the HyperTerminal to receive messages from the
HelloFullDuplexSerial object.

 To open a new HyperTerminal
Connection, click the Windows Start
button, then select All Programs →
Accessories → Communications →
HyperTerminal. If you see both an
icon and a folder, make sure to click
the icon (click the application icon,
not the folder).

Look
here

Copyright © Parallax Inc. ● PE Lab: Objects v1.0 ● 2/15/2007 ● Page 17 of 45

 Give the new HyperTerminal
connection a name. These labs will
use the name PropellerCOM.

 In the Connect using field, select the
COM port you made a note of earlier
with the Propeller Tool software’s
Information window.

 In the COM properties window,
select 57600 bits per second, 8 data
bits, no parity, 1 stop bit, and no
flow control.

 Then, click OK to continue. The

HyperTerminal Window will appear.

 Click File and select Save as...then
save PropellerCom.ht with your
Objects Lab .spin files.

 Click the Disconnect button to end

the connection. This makes
HyperTerminal release the COM
port for the Propeller Tool to
download programs to the Propeller
chip.

 Use the Propeller Tool software to
load HelloFullDuplexSerialCom into
the Propeller chip.

 Click the HyperTerminalWindow’s

Call button. A new copy of “This is
a test message!” should display
every 1 second.

Call Disconnect

Copyright © Parallax Inc. ● PE Lab: Objects v1.0 ● 2/15/2007 ● Page 18 of 45

Keeping the COM Port Clear
Make sure to always disconnect the HyperTerminal software before loading an application into the
Propeller chip.

 Before loading a new Program into the Propeller chip, always click HyperTerminal’s
Disconnect button.

 After downloading a new program that sends messages to the Propeller chip, click
HyperTerminal’s Connect button to view the messages.

Changing Baud Rates
So long as the Baud rates are the same, you can select the baud rate that’s best for your application.
For example, you can change the baud rate from 57.6 to 115.2 kbps as follows.

 Click HyperTerminal’s disconnect button.
 Click File and select Properties.
 Click Configure
 Choose 115200 in the Bits per second dropdown menu, and then click OK.

 In the Propeller Tool, modify the HelloFullDuplexSerial object’s start method call, so that it

passes the value 115200 to the FullDuplexSerial object’s start method’s baudrate parameter,
like this:

 Debug.start(31, 30, 0, 115200)

 Load the modified version of HelloFullDuplexSerial into the Propeller chip.
 Click HyperTerminal’s Call Button.
 Verify that the messages still display at the new baud rate.

 Make sure to change the settings back to 57600 in both programs and test to make sure

they still work before proceeding.

Displaying Values
Take another look at the FullDuplexSerial object in documentation mode. (See Figure 10 on page
14.) Notice that it also has a dec method for displaying decimal numbers. This method takes a value
and converts it to the characters that represent the value before transmitting them serially. It’s
especially useful for displaying sensor readings and values stored by variables for figuring out
program bugs.

 Modify the HelloFullDuplexSerial object’s test messages declaration by adding a local
variable declaration:

 PUB TestMessages | counter

 Modify the the HelloFullDuplexSerial object’s repeat loop as shown here:

 repeat
 Debug.str(String("counter = "))
 Debug.dec(counter++)
 Debug.str(String(10, 13))
 waitcnt(clkfreq/5 + cnt)

 Remember to make sure that HyperTerminal’s Disconnect button has been clicked.

Copyright © Parallax Inc. ● PE Lab: Objects v1.0 ● 2/15/2007 ● Page 19 of 45

 Use the Propeller Tool software to load the modified version of HelloFullDuplexSerial into
the Propeller chip's EEPROM.

 Click HyperTerminal’s Connect button, and verify that the updated value of counter is
displayed five times every second. You can push the PE Platform's Reset button to start the
count at 0 again.

Sending Values from HyperTerminal to the Propeller Chip
The FullDuplexSerial object does not have a corresponding GetDec method to complement dec. So,
as written, you cannot type a decimal value and send it to the Propeller chip via HyperTermnial. A
modified version of FullDuplexSerial named FullDuplexSerialPlus is included with the .spin files that
accompany this lab. The FullDuplexSerialPlus object has all the same methods as FullDuplexSerial,
plus a few more, like GetDec, GetBin, and GetHex. The additional methods receive and interpret
decimal, hexadecimal and binary character representations from HyperTerminal and convert them to
their corresponding numeric values, which can in turn be stored in variables. Since it also has the
same methods as FullDuplexSerial, calls like Debug.start, Debug.str, and Debug.dec still yield the
same results.

Remember that an object can be declared so long as it’s either in the same folder with the object that’s
referencing it, or in the same folder as the Propeller Tool software. In this case, the
FullDuplexSerialPlus object is in the same folder with this lab’s example objects. So, it can be
declared in a parent object’s OBJ block almost same way FullDuplexSerial was. The only difference
is that the parent object has to use the slightly different filename. So, instead of using a Debug :
FullDuplexSerial declaration, use Debug : FullDuplexSerialPlus.

 Open both the FullDuplexSerial and FullDuplexSerialPlus objects in Documentation mode.
 Use the Object Interface section to see which methods have been added - there are 6, and the

method names are capitalized.
 Check the documentation for the new methods. The documentation comments for the other

methods were expanded too; look them over as well.

Modifying HyperTerminal to Echo
HyperTerminal does not echo characters typed locally by default. That means, if you type a
character, it won’t show in the window. The characters still get sent to the Propeller chip, but it can
be a little unnerving not having the feedback displayed by HyperTerminal. Here’s how to configure
HyperTerminal to echo characters typed locally.

 Open PropellerCOM.ht.
 Click the Disconnect button.
 Click File and select Properties.
 Click the PropellerCOM properties’ Settings tab.
 Click the ASCII Setup button.
 Set a checkmark in the Echo typed characters locally

checkbox.
 Click File and select Save so that this feature will be

available next time you open PropellerCOM.ht.

Testing HyperTerminal for Input Values
The EnterAndDisplayValues object below waits for you to enter a value into HyperTerminal. Then,
it converts the characters that represent the value into a numeric equivalent and displays them in
decimal, hexadecimal and binary format in HyperTerminal.

Copyright © Parallax Inc. ● PE Lab: Objects v1.0 ● 2/15/2007 ● Page 20 of 45

Figure 12 shows an example of testing the
EnterAndDisplayValues object with HyperTerminal. The
object makes the Propeller Chip send prompts that are
displayed in HyperTerminal for entering a value. After
pressing enter, the Propeller chip converts the characters
to the corresponding value, stores it in a variable, and
then uses the FullDuplexSerialPlus object to send back
the decimal, hexadecimal, and binary representations of
the value.

 Make sure HyperTerminal is disconnected.
 Load EnterAndDisplayValues into EEPROM (F11).
 Connect HyperTerminal (click the Connect button).
 Restart the Propeller Chip’s program by pressing and releasing the PE Platform’s reset button

(the one on the left side connected to RESn and GND).
 Follow the prompts in HyperTerminal. Start with 131071 and verify that it displays the

values shown in Figure 12.

The Propeller represents negative numbers with twos complement.

 Try entering these values: 4, 3, 2, 1, 0, -1, -2, -3, -4, -5, and discern the pattern of twos
complement.

The Propeller chip’s long variables store 32 bit signed integer values, ranging from -2,147,483,648 to
2,147,483,647.

 Try entering 2,147,483,645, 2,147,483,646, and 2,147,483,647 and examine the equivalent
hexadecimal and binary values.

 Also try it with -2,147,483,646, -2,147,483,647, and -2,147,483,648.

'' File: EnterAndDisplayValues.spin
'' Messages to/from Propeller chip with HyperTerminal.
'' Prompts you to enter a value, and displays the value in decimal,
'' binary, and hexadecimal formats.

CON

 _clkmode = xtal1 + pll16x
 _xinfreq = 5_000_000

OBJ

 Debug: "FullDuplexSerialPlus"

PUB TwoWayCom | value

 ''Test HyperTerminal number entry and display.

 Debug.start(31, 30, 0, 57600)

Figure 12: Testing for Input Values

Copyright © Parallax Inc. ● PE Lab: Objects v1.0 ● 2/15/2007 ● Page 21 of 45

 repeat

 Debug.Str(String("Enter a decimal value: "))
 value := Debug.getDec
 Debug.Str(String(10, 10, 13, "You Entered", 10, 13, "--------------"))
 Debug.Str(String(10, 13, "Decimal: "))
 Debug.Dec(value)
 Debug.Str(String(10, 13, "Hexadecimal: "))
 Debug.Hex(value, 8)
 Debug.Str(String(10, 13, "Binary: "))
 Debug.Bin(value, 32)
 repeat 2
 Debug.Str(String(10, 13))

Debug.dec vs. Debug.getDec
The FullDuplexSerialPlus object’s GetDec method buffers characters it receives form HyperTerminal
until the enter key is pressed. Then, it converts the characters into their corresponding decimal value,
and returns that value. The EnterAndDisplayValues object’s command value := Debug.GetDec
copies the result of the GetDec method call to the value variable. The command Debug.Dec(value)
displays the value in decimal format. The command Debug.Hex(value, 8) displays the value in 8
character hexadecimal format, and the command Debug.Bin(value, 32) displays it in 32 character
binary format.

Hex and Bin Character Counts
If you’re sure you’re only going to be displaying positive word or byte size variables, there’s no
reason to display all 32 bits of a binary value. Since word variables have 16 bits, and byte variables
only have 8 bits, that’s all you’ll need to display with the binary value.

 Make a copy of EnterAndDisplayValues and change the command Debug.Bin(value, 32) to
Debug.Bin(value, 16).

 Remove the local variable | value from the TwoWayCom method declaration (remember that
local variables are always 32 bits; whereas global variables can be declared long, word, or
byte.)

 Add a VAR block to the object, declaring value as a word variable.
 Re-run the program, entering values that range from 0 to 65535.
 What happens if you enter 65536, 65537, and 65538? Try repeating this with the unmodified

object, to see the missing bits.

Each hexadecimal digit takes 4 bits. So, it will take 4 digits to display all possible values in a word
variable (16-bits).

 Modify the copy of EnterAndDisplayValues so that it only displays 4 hexadecimal digits.

Terminal I/O Pin Input State Display
The HyperTerminal display provides a convenient means for testing
sensors to make sure that both the program and wiring are correct.
The DisplayPushbuttons object below displays the values stored in
ina[23..21] in binary format as shown in Figure 13. A 1 in a
particular slot indicates the pushbutton is pressed; a 0 indicates the
pushbutton is not pressed. Figure 13 shows an example where the
P21 and P23 pushbuttons are pressed.

Figure 13: HyperTerminal
Pushbutton State Display

Copyright © Parallax Inc. ● PE Lab: Objects v1.0 ● 2/15/2007 ● Page 22 of 45

The DisplayPushbuttons object uses the command Debug.Bin(ina[23..21], 3) to display the
pushbutton states. Recall from the I/O and Timing lab that ina[23..21] returns the value stored in
bits 23 through 21 of the INA register. This result gets passed as a parameter to the
FullDuplexSerialPlus object’s bin method with the command Debug.bin(ina[23..21], 3). Note that
since there are only 3 bits displayed, the bin method’s bits parameter is only 3, which in turn makes
the method display only 3 binary digits. Notice also that the command that follows it is
Debug.tx(13). This sends the carriage return byte (13), but not the line feed byte (10). That’s why
the display refreshes on the same line.

Since the FullDuplexSerialPlus object is running a serial driver in another cog, it is possible to
transfer messages to it faster than the baud rate will allow it to send. The waitcnt(clkfreq/100 +
cnt) command paces the updated values every 1/100 of a second to prevent buffer overflow.

 Disconnect HyperTerminal.
 Load the DisplayPushbuttons object F11.
 You will have 3 seconds to connect HyperTerminal after the Propeller Tool is finished, or

press the breadboard's Reset button if needed.
 Press the pushbuttons and verify that the display is correct.

{{
DisplayPushbuttons.spin
Display pushbutton states with HyperTerminal.

Pushbuttons
──
 3.3 V 3.3 V 3.3 V

 │ │ │
 ┤Pushbutton ┤Pushbutton ┤Pushbutton
 │ │ │
P21 ──┫ P22 ──┫ P23 ──┫
 │ │ │
 10 kω 10 kω 10 kω
 │ │ │

 GND GND GND
──
}}

CON

 _clkmode = xtal1 + pll16x
 _xinfreq = 5_000_000

OBJ

 Debug: "FullDuplexSerialPlus"

PUB TerminalPushbuttonDisplay

 ''Read P23 through P21 pushbutton states and display with HyperTerminal.

 Debug.start(31, 30, 0, 57600)
 waitcnt(clkfreq*3 + cnt)
 Debug.str(String("Pushbutton States", 10, 13, "-----------------", 10, 13))

 repeat

 Debug.Bin(ina[23..21], 3)
 Debug.Tx(13)
 waitcnt(clkfreq/100 + cnt)

Copyright © Parallax Inc. ● PE Lab: Objects v1.0 ● 2/15/2007 ● Page 23 of 45

Terminal LED Output Control
Testing various actuators is also important during
prototyping. The TerminalLedControl object demonstrates a
convenient means for setting output states for testing various
output circuits, shown in Figure 14. While this example uses
LED indicator lights, it could just as easily be chip enable
inputs, solenoids, relays, DC motors, or control circuits.

The command outa[9..4] := Debug.GetBin calls the
FullDuplexSerialPlus object’s GetBin method. This method
returns the value that corresponds to the characters
representing a binary value that it receives. The value the
GetBin method returns is assigned to outa[9..4], which
makes the corresponding LED pattern light up.

 Make sure HyperTerminal is disconnected.
 Load TerminalLedControl into the Propeller chip.
 You will have 3 seconds to connect HyperTerminal.
 Try the values shown in Figure 14, and verify that the corresponding LED patterns light up.

{{
TerminalLedControl.spin

Enter LED states into HyperTerminal. Propeller chip receives the states and
lights the corresponding LEDs.

 LED SCHEMATIC
 ──────────────────────
 (all)
 100 ω LED
 P4 ──────────┐
 │
 P5 ──────────┫
 │
 P6 ──────────┫
 │
 P7 ──────────┫
 │
 P8 ──────────┫
 │
 P9 ──────────┫

 GND
 ──────────────────────
}}

CON

 _clkmode = xtal1 + pll16x
 _xinfreq = 5_000_000

OBJ

 Debug : "FullDuplexSerialPlus"

PUB TerminalLedControl

 ''Set/clear I/O pin output states based binary patterns entered into HyperTerminal.

Figure 14: Entering Binary Patterns
that Control I/O Pin Output States

Copyright © Parallax Inc. ● PE Lab: Objects v1.0 ● 2/15/2007 ● Page 24 of 45

 Debug.start(31, 30, 0, 57600)
 waitcnt(clkfreq*3 + cnt)
 dira[4..9]~~

 repeat

 Debug.Str(String(10, 13, "Enter 6-bit binary pattern: "))
 outa[4..9] := Debug.getBin

The DAT Block and Address Passing
One of the DAT block’s uses is for storing sequences of values (including characters). Especially for
longer messages and menu designs, keeping all the messages in a DAT block can be a lot more
convenient than using string("...") in the code.

 The DAT Block can also be used to store assembly language code that gets launched into a cog. For an
example, take a look at FullDuplexSerial in Full Source view mode. Assembly language techniques will be the
subject of other labs.

Below is the DAT block from the next example object, TestMessages. Notice how each line has a
label, a size, and a sequence of values (characters in this case).

DAT

 MyString byte 10, 13, "This is test message number: ", 0
 MyOtherString byte ", ", 10, 13, "and this is another line of text.", 0
 CR byte 10, 13, 0

Remember that the string directive returns the starting address of the string so that the
FullDuplexSerial object’s str method can start sending characters, and then stop when it encounters
the zero termination character. With DAT blocks, the zero termination character has to be manually
added. The name of a given DAT block directive makes it possible to pass the starting address of the
sequence using the @ operator. For example, @MyString returns the address of the first character in the
MyString sequence. So, Debug.str(@myString) will start fetching and transmitting characters at the
address of the first character in MyString, and will stop when it fetches the 0 that follows the
"…number: " characters.

 Make sure HyperTerminal is disconnected. Load the TestMessages object (F11), and then
connect HyperTerminal.

 Verify that the three messages are displayed each second.

'' TestMessages.spin
'' Send text messages stored in the DAT block to HyperTerminal.

CON

 _clkmode = xtal1 + pll16x
 _xinfreq = 5_000_000

OBJ

 Debug: "FullDuplexSerialPlus"

PUB TestDatMessages | value, counter

Copyright © Parallax Inc. ● PE Lab: Objects v1.0 ● 2/15/2007 ● Page 25 of 45

 ''Send messates stored in the DAT block.

 Debug.start(31, 30, 0, 57600)
 waitcnt(clkfreq*3 + cnt)

 repeat
 Debug.Str(@MyString)
 Debug.Dec(counter++)
 Debug.Str(@MyOtherString)
 Debug.Str(@CR)
 waitcnt(clkfreq + cnt)

DAT

MyString byte 10, 13, "This is test message number: ", 0
MyOtherString byte ", ", 10, 13, "and this is another line of text.", 0
CR byte 10, 13, 0

Expanding the DAT Section and Accessing its Elements
Here is a modified DAT section. The text messages have different content and different label names.
In addition, there is a ValueList with long elements instead of byte elements.

DAT

 ValTxt byte 10, 13, "The value is: ", 0
 ElNumTxt byte ", ", 10, 13, "and it's element #: ", 0
 ValueList long 98, 5282, 299_792_458, 254, 0
 CR byte 10, 13, 0

Individual elements in the list can be accessed with long, word, or byte. For example,
long[@ValueList] would return the value 98, the first long.

There’s an optional offset that can be added in a second bracket for accessing successive elements in
the list. For example:

value := long[@ValueList][0] ' copies 98 to the value variable
value := long[@ValueList][1] ' copies 5282 to the value variable
value := long[@ValueList][2] ' copies 299_792_458 to value

The long, word, and byte keywords have different uses in different types of blocks.

In VAR blocks, long, word and byte can be used to declare three different sizes variables. In DAT blocks,
long, word, and byte can be used to declare the element size of lists. In PUB and PRI methods, long,
word, and byte are used to retrieve values at certain addresses.

 Make a copy of the TestMessages object, and replace the DAT section with the one above.

Replace the PUB section with the one shown below.

PUB TwoWayCom | value, index

 Debug.start(31, 30, 0, 57600)
 waitcnt(clkfreq*3 + cnt)

 repeat
 repeat index from 0 to 4
 Debug.Str(@ValTxt)
 value := long[@valueList][index]
 Debug.Dec(value)
 Debug.Str(@ElNumTxt)

Copyright © Parallax Inc. ● PE Lab: Objects v1.0 ● 2/15/2007 ● Page 26 of 45

 Debug.Dec(index)
 Debug.Str(@CR)
 waitcnt(clkfreq + cnt)

 Test the modified object with the Propeller chip and HyperTerminal. Note how an index
variable is used in long[@ValueList][index] to return successive elements in the ValueList.

The Float and FloatString Objects
Floating-point is short for floating decimal point, and it refers to values that might contain a decimal
point, preceded and/or followed by some number of digits. The IEEE754 single precision (32-bit)
floating-point format is supported by the Propeller Tool software and by the Float and FloatString
Propeller Library objects. This format uses a certain number of bits in a 32-bit variable for a
number’s significant digits, other bits to store the exponent, and a single bit to store the value’s sign.

While calculations involving two single-precision floating-point values aren’t as precise as those
involving two 32-bit variables, it’s great when you have fractional values to the right of the decimal
point, including very large and small magnitude numbers. For example, while signed long variables
can hold integers from -2,147,483,648 to 2,147,483,647, single-precision floating-point values can
represent values as large as ±3.403×1038, or as small as ±1.175×10−38.

Another lab will delve further into floating-point mechanics and applications. For this lab, it’s just
important to know that the Propeller Library has objects that can be used to process floating-point
values. HyperTerminalFloatStringTest demonstrates some basic floating-point operations. First,
a := 1.5 and b := pi are using the Propeller Tool’s software’s ability to recognize floating point
values to pre-assign the floating-point version of 1.5 to the variable a and pi (3.141593) to b. Then, it
uses the FloatMath object to add the floating-point values stored by the variables a and b. Finally, it
uses the FloatString object to display the result, which gets stored in c.

''HyperTerminalFloatStringTest.spin
''Solve a floating point math problem and display the result with HyperTerminal.

CON

 _clkmode = xtal1 + pll16x
 _xinfreq = 5_000_000

OBJ

 Debug : "FullDuplexSerialPlus"
 fMath : "FloatMath"
 fString : "FloatString"

PUB TwoWayCom | a, b, c

 '' Solve a floating point math problem and display the result.

 Debug.start(31, 30, 0, 57600)

 a := 1.5
 b := pi

 c := fmath.FAdd(a, b)

 Debug.str(String("1.5 + Pi = "))

 debug.str(fstring.FloatToString(c))

Copyright © Parallax Inc. ● PE Lab: Objects v1.0 ● 2/15/2007 ● Page 27 of 45

Objects that Use Variable Addresses
Like elements in DAT blocks, variables also have addresses in RAM. Certain objects are designed to
be started with variable address parameters. They often run in separate cogs, and either update their
outputs based on a value stored in the parent object’s variable(s) or update the parent object’s
variables based on measurements or incoming data, or both.

AddressBlinker is an example of an object that fetches values from its parent object’s variables. Note
that its Start method has parameters for two address values, pinAddress and rateAddress. The
parent object has to pass the AddressBlinker object’s Start method the address of a variable that
stores the I/O pin number, and another that stores the rate. The Start method relays these
pareameters to the Blink method via the method call in the cognew command. So, when the Blink
method gets launched into a new cog, it also receives copies of these addresses. Each time through
the Blink method’s repeat loop, it check’s the values stored in its parent object’s variables with pin
:= long[rateAddress] and rate := long[rateAddress]. Note that since the pinAddress and
rateAddress already store addresses, the @ operator is no longer needed.

'' File: AddressBlinker.spin
'' Example cog manager that watches variables in its parent object

VAR
 long stack[10] 'Cog stack space
 byte cog 'Cog ID

PUB Start(pinAddress, rateAddress) : success
''Start new blinking process in new cog; return True if successful.
''Parameters: pinAddress - long address of the variable that stores the I/O pin
'' rateAddress - long address of the variable that stores the rate

 Stop
 success := (cog := cognew(Blink(pinAddress, rateAddress), @stack) + 1)

PUB Stop
''Stop blinking process, if any.

 if Cog
 cogstop(Cog~ - 1)

PRI Blink(pinAddress, rateAddress) | pin, rate, pinOld, rateOld

 pin := long[pinAddress]
 rate := long[rateAddress]
 pinOld := pin
 rateOld := rate

 repeat
 pin := long[pinAddress]
 dira[pin]~~
 if pin <> pinOld
 dira[pinOld]~
 !outa[pin]
 pinOld := pin
 rate := long[rateAddress]
 waitcnt(rate/2 + cnt)

Copyright © Parallax Inc. ● PE Lab: Objects v1.0 ● 2/15/2007 ● Page 28 of 45

The AddressBlinkerControl object below uses the
AddressBlinker object. After it passes the addresses of its pin
and rateDelay variables to AddressBlinker’s start method, the
AddressBlinker object checks these variables between each
LED state change. If the value of either pin or rateDelay has
changed, AddressBlinker detects this and updates the LED’s
pin or blink rate accordingly.

 Disconnect PropellerCOM.
 Load AddressBlinkerControl into the EEPROM (F11).

Connect PropellerCOM.
 Try the values shown in Figure 15, and keep an eye on

the LEDs.

As soon as you press enter, the AddressBlinker will update based on the new value stored in either the
AddressBlinkerControl object’s pin or rateDelay variables.

'' AddressBlinkerControl.spin
'' Enter LED states into HyperTerminal and send to Propeller chip via HyperTerminal.

CON

 _clkmode = xtal1 + pll16x
 _xinfreq = 5_000_000

OBJ

 Debug: "FullDuplexSerialPlus"
 AddrBlnk: "AddressBlinker"

VAR

 long pin, rateDelay

PUB UpdateVariables

 '' Update variables that get watched by AddressBlinker object.

 Debug.start(31, 30, 0, 57600)

 pin := 4
 rateDelay := 10_000_000

 AddrBlnk.start(@pin, @rateDelay)

 dira[4..9]~~

 repeat

 Debug.Str(String(10, 13, "Enter pin number: "))
 pin := Debug.getDec
 Debug.Str(String(10, 13, "Enter delay clock ticks:"))
 rateDelay := Debug.getDec
 Debug.Str(String(10, 13))

Figure 15: Entering Pin and Rate
into HyperTerminal

Copyright © Parallax Inc. ● PE Lab: Objects v1.0 ● 2/15/2007 ● Page 29 of 45

Displaying Addresses
The values of pin and rateDelay can be displayed with Debug.Dec(pin) and Debug.Dec(rateDelay).
The addresses of pin and rateDelay can be displayed with Debug.Dec(@pin) and
Debug.Dec(@rateDelay).

 Insert commands that display the addresses of the pin and rateDelay variables in
HyperTerminal just before the repeat loop starts, and display the value of those variables each
time they are entered.

Address offsets
Objects sometimes require that the parent object declare a sequence of variables, each storing a
particular type of value that it will monitor from another cog. This approach is useful for preventing
the parameter list length from getting out of hand. For example, if there are twenty variables that the
object needs to monitor in the parent object, a single address at the start of the variables is all that
needs to get passed to the object. Keep in mind these variables have to be declared in an order
specified by the object’s documentation.

AddressBlinkerWithOffsets demonstrates how this works. The only difference between this object
and AddressBlinker is that it receives the address of the parent object’s variable that stores the pin
value. The address of this variable is the only one that gets passed, and the object requires that the
variable storing the blink rateDelay variable be declared next, immediately to the right of the parent
object’s pin value variable declaration.

Since the baseAddress parameter stores the address of the parent object’s pin variable,
long[baseAddress][0] will access this value. Likewise, long[baseAddress][1] will access the blink
rate. That’s how this program fetches both variable values with just one parameter.

'' File: AddressBlinkerWithOffsets.spin
'' Example cog manager that watches variables in its parent object

VAR
 long stack[10] 'Cog stack space
 byte cog 'Cog ID

PUB Start(baseAddress) : success
''Start new blinking process in new cog; return True if successful.

 Stop
 success := (cog := cognew(Blink(baseAddress), @stack) + 1)

PUB Stop
''Stop blinking process, if any.

 if Cog
 cogstop(Cog~ - 1)

PUB Blink(baseAddress) | pin, rate, pinOld, rateOld

 pin := long[baseAddress][0]
 rate := long[baseAddress][1]
 pinOld := pin
 rateOld := rate

Copyright © Parallax Inc. ● PE Lab: Objects v1.0 ● 2/15/2007 ● Page 30 of 45

 repeat
 pin := long[baseAddress][0]
 dira[pin]~~
 if pin <> pinOld
 dira[pinOld]~
 !outa[pin]
 pinOld := pin
 rate := long[baseAddress][1]
 waitcnt(rate/2 + cnt)

The AddressBlinkerControlWithOffsets object below does the same thing as the previous
AddressBlinkerControl example object, but it uses the AddressBlinkerWithOffsets object, passing it a
single address parameter (the address of its pin variable).

In this object, the variable declaration long pin, rateDelay is crucial. If the order of these two
variables were swapped, the application wouldn’t work right. Again, that’s because the
AddressBlinkerWithOffsets object expects to receive the address of a long variable that stores the pin
value, and it expects the next consecutive long variable to store the rateDelay variable. However, it’s
perfectly fine to declare long variables before and after these two. It’s just that they have to be long,
and they have to be declared in the specified order. Remember to keep an eye open for this feature in
objects that launch processes into other cogs.

 Test AddressBlinkercontrolWtihOffsets and verify that it is functionally identical to
AddressBlinkerControl.

'' File: AddressBlinkerControlWithOffsets.spin
'' Another example cog manager that watches variables in its parent object.
'' This one only takes one address, but uses it as an anchor for watching
'' three varaibles in the parent object.

CON

 _clkmode = xtal1 + pll16x
 _xinfreq = 5_000_000

VAR

 long pin, rateDelay

OBJ

 Debug: "FullDuplexSerialPlus"
 AddrBlnk: "AddressBlinkerWithOffsets"

PUB TwoWayCom

 ''Send test messages and values to HyperTerminal.

 Debug.start(31, 30, 0, 57600)

 pin := 4
 rateDelay := 10_000_000

 AddrBlnk.start(@pin)

 dira[4..9]~~

Copyright © Parallax Inc. ● PE Lab: Objects v1.0 ● 2/15/2007 ● Page 31 of 45

 repeat

 Debug.Str(String(10, 13, "Enter pin number: "))
 pin := Debug.getDec
 Debug.Str(String(10, 13, "Enter delay for 'rate':"))
 rateDelay := Debug.getDec
 Debug.Str(String(10, 13))

Questions
1) What are the differences between calling a method in the same object and calling a method in

another object?
2) Does calling a method in another object affect the way parameters and return values are

passed?
3) What file location requirements have to be satisfied before one object can successfully

declare another object?
4) Where can object hierarchy in your application be viewed?
5) How are documentation comments included in an object?
6) How do you view an object's documentation comments while filtering out code?
7) By convention, what method names do objects use for launching methods into new cogs and

shutting down cogs?
8) What if an object manages one process in one new cog, but you want more than one instance

of that process launched in multiple cogs?
9) What is the net effect of an object’s Start method calling its Stop method?
10) How are custom characters for schematics, measurements, mathematical expressions, and

timing diagrams entered into object comments?
11) What are the differences between a public and private method?
12) How do you declare multiple copies of the same object?
13) Where are Propeller Library objects stored?
14) How do you view Object Interface information?
15) Where in RAM usage does the String directive cause character codes to be stored?
16) Why are zero-terminated strings important for the FullDuplexSerial object?
17) What should an object’s documentation comments explain about a method?
18) How can character strings be stored, other than with the String declaration?
19) What are the three different uses of the long, word and byte keywords in the Spin language?
20) What method does the Float object use to add two floating-point numbers?
21) What object’s methods can be used to display floating-point numbers as strings of characters?
22) Is the command a := 1.5 processed by the FloatMath object?
23) How does a variable’s address get passed to an object method’s parameter?
24) How can passing an address to an object’s method reduce the number of parameters required?
25) Given a variable’s address, how does an object’s method access values stored in that variable

and variables declared after it?
26) Given an address, can an object monitor a variable value?
27) Given an address, can an object update the variable in another object using that address?

Exercises
1) Given the file MyLedObjec.spin, write a declaration for another object in the same folder so

that it can use its methods. Use the nickname led.
2) Write a command that calls a method named on in an object nicknamed led. This method

requires a pin parameter (use 4).
3) List the decimal values of the Parallax Font characters required to write this expression in a

documentation comment: f = T.

Copyright © Parallax Inc. ● PE Lab: Objects v1.0 ● 2/15/2007 ● Page 32 of 45

4) Declare a private method named calcArea that accepts parameters height and width, and
returns area.

5) Declare five copies of an object named FullDuplexSerial (which could be used for five
simultaneous serial communication bidirectional serial connections). Use the nickname uart.

6) Call the third FullDuplexSerial object’s str method, and send the string “Hello!!!”. Assume
the nickname uart.

7) Write a DAT block and include a string labeled Hi with the zero terminated string “Hello!!!”.
8) Write a command that calculates the circumference (c) of a circle given the diameter (d).

Assume the FloatMath object has been nicknamed f.
9) Given the variable c, which stores a floating-point value, pass this to a method in FloatString

that returns the address of a stored string representation of the floating-point value. Store this
address in a variable named address. Assume the nickname fst.

Projects
1) The TestBs2IoLiteObject uses method calls that are similar to the BASIC Stamp

microcontroller’s PBASIC programming language commands. This object needs a Bs2IoLite
object with methods like high, pause, low, in, and toggle. Write an object that supports these
method calls using the descriptions in the comments.

''Top File: TestBs2IoLiteObject.spin
''Turn P6 LED on for 1 s, then flash P5 LED at 5 Hz whenever the
''P21 pushbutton is held down.

OBJ

 stamp : "Bs2IoLite"

PUB ButtonBlinkTime | time, index

 stamp.high(6) ' Set P6 to output-high
 stamp.pause(1000) ' Delay 1 s
 stamp.low(6) ' Set P6 to output-low
 stamp.low(5) ' Set P5 to output-low
 repeat ' Repeat (like DO...LOOP in PBASIC)
 if stamp.in(21) ' If P21 pushbutton pressed
 stamp.toggle(5) ' Toggle P5 output state
 else
 stamp.low(5)
 stamp.pause(100) ' Delay 0.1 s before repeat

2) Examine the Stack Length object in the Propeller Library, and the Stack Length Demo in the
Propeller Library Demo folders. Make a copy of Stack Length Demo.spin, and modify it to
test the stack space required for launching the Blinker object’s Blink method (from the
beginning of this lab) into a cog. Create a HyperTerminal connection based on
StackLenthDemo’s documentation to display the result. NOTE: The instructions for using
the Stack Length object are hidden in its THEORY OF OPERATION comments, which are
visible in documentation view mode.

3) Some applications will have a clock running in a cog for timekeeping. Below is a

HyperTerminal display that gets updated each time the PE Platform’s P23 pushbutton is
pressed and released.

Copyright © Parallax Inc. ● PE Lab: Objects v1.0 ● 2/15/2007 ● Page 33 of 45

The HyperTerminal gets updated by the HtButtonLogger object below. There are two calls to
the TickTock object. The first is call is Time.Start(0, 0, 0, 0), which initializes the
TickTock object’s day, hour, minute, and second variables. The second method call is
Time.Get(@days, @hours, @minutes, @seconds). This method call passes the TickTock object
the addresses of the HtButtonLogger object’s days, hours, minutes, and seconds variables.
The TickTock object updates these variables with the current time.

Your task in this project is to write the TickTock object that works with the HtButtonLogger
object. Make sure to use the second counting technique from the GoodTimeCount method
from the I/O and Timing lab.

'' HtButtonLogger.spin
'' Log times the button connected to P23 was pressed/released in HyperTerminal.

CON

 _clkmode = xtal1 + pll16x
 _xinfreq = 5_000_000

OBJ

 Debug : "FullDuplexSerialPlus"
 Button : "Button"
 Time : "TickTock"

VAR

 long days, hours, minutes, seconds

PUB TestDatMessages

 Debug.start(31, 30, 0, 57600) ' Start FullDuplexSerialPlus object.
 waitcnt(clkfreq*3 + cnt) ' Wait for three seconds.
 Time.Start(0, 0, 0, 0) ' Start the TickTock object and initialize
 ' the day, hour, minute, and second.
 Debug.Str(@BtnPrompt) ' Display instructions in HyperTerminal
 repeat

 if Button.Time(23) ' If button pressed.
 ' Pass variables to TickTock object for update.
 Time.Get(@days, @hours, @minutes, @seconds)
 DisplayTime ' Display the current time.

Copyright © Parallax Inc. ● PE Lab: Objects v1.0 ● 2/15/2007 ● Page 34 of 45

PUB DisplayTime

 Debug.Str(@CR)
 Debug.Str(String("Day:"))
 Debug.Dec(days)
 Debug.Str(String(" Hour:"))
 Debug.Dec(hours)
 Debug.Str(String(" Minute:"))
 Debug.Dec(minutes)
 Debug.Str(String(" Second:"))
 Debug.Dec(seconds)

DAT

BtnPrompt byte 10, 13, "Press/release P23 pushbutton periodically...", 0
CR byte 10, 13, 0

Question Solutions
1) A method call in the same object just uses the method’s name. A call to a method in another

object uses a nickname that was given to the object in OBJ block, then a dot, then the
method’s name. So the difference is instead of just using MethodName, it’s
ObjectNickname.MethodName.

2) No. Parameters are passed and returned the same way they would in a method in the same
object.

3) The object that’s getting declared has to either be in the same folder with the object that’s
declaring it, or in the same folder with the Propeller Tool software.

4) In the Object View pane, which can be viewed in the Object Info window (F8), and also in
the upper-left corner of the Propeller Tool software’s Explorer pane.

5) Two apostrophes can be placed to the left of a comment that should appear in the Propeller
Tool software’s documentation view. A multiline block of documentation text can be defined
with double-braces like this {{documentation comments}}.

6) By clicking the Documentation radio button above the code.
7) Method names Start and Stop.
8) Declare multiple copies of the object in the OBJ section, and call each of their Start methods.
9) If the process the object manages is already running in another cog, the call to the Stop

method shuts it down before launching the process into a new cog.
10) By clicking on characters in the Propeller Tool Character Chart.
11) Public methods are declared with PUB, private with PRI. Public methods can be called by

commands in other objects; private methods can only be called from within the same object.
12) Declare multiple copies of the same object by declaring an object array. For example, the

command nickname[3] : ObjectName declares three copies of ObjectName, nickname[0],
nickname[1], and nickname[2]. Note that it doesn’t actually make extra copies of the object
code. Each instance still uses the same copy of the Spin code that is loaded into the Propeller
chip.

13) They are stored in the same folder with the Propeller Tool software .exe file.
14) To view the Object Interface information, click the Documentation radio button, and the

Propeller Tool software automatically generates that information and displays it along with
the documentation comments.

15) In the Program codes.
16) Given a start address in RAM, the FullDuplexSerial object’s Str method fetches and

transmits characters until it fetches a zero.

Copyright © Parallax Inc. ● PE Lab: Objects v1.0 ● 2/15/2007 ● Page 35 of 45

17) Documentation comments should explain what the method does, its parameters (if any) and
its return value.

18) Character strings and other lists of values can be stored in an object’s DAT section.
19) They are used to (1) declare variables in VAR blocks, (2) declare list element sizes in DAT

blocks, and (3) return values stored at given addresses within PUB and PRI blocks.
20) The Float object uses FAdd to add two floating-point numbers.
21) The FloatString object.
22) No, the Propeller Tool packs 1.5 into floating-point format at compile time and stores it with

the program byte codes. The command a := 1.5 copies the value into a variable.
23) A variable’s address get passed to an object method’s parameter with the @ operator. Instead

of this format: ObjectNickname.MethodName(variableName), use the following format:
ObjectNickname.MethodName(@variableName).

24) An object can declare a list of variables in a certain order, and then assign them each values
that the object will use. Then, the address of the first variable in the list can be passed to the
object’s method.

25) The object will use either long, word or byte and the address. For example, if the address is
passed to a parameter named address, the object can access the value stored by the variable
with long[address][0] or just long[address]. To store the variable declared immediately to
the right of the variable at address, long[address][1] can be used. For the second variable to
the right, long[address][2] can be used, and so on.

26) Yes. This can be useful at times, because the parent object can simply update a variable
value, and an object running another process will automatically update based on that value.

27) Yes. This comes in handy when a process is running in another cog, and the parent object
needs one or more of its variables to be automatically updated by the other process.

Exercise Solutions
1) Solution:

led : "MyLedObject"

2) Solution:
led.On(4)

3) With the aid of the Propeller Tool software’s Character Chart: 102, 32, 61, 32, 84, 22.

4) Solution:
PRI calcArea(height, width) : area

5) Solution:
Uart[5] : "FullDuplexSerial"

6) Solution:
uart[2].str(String("Hello!!!"))

7) Solution:
DAT
 Hi byte “Hello!!!”, 0

8) Solution:

c := f.fmul(d, pi)

9) Solution:
address := fst(c)

Copyright © Parallax Inc. ● PE Lab: Objects v1.0 ● 2/15/2007 ● Page 36 of 45

Project Solutions
1) Example Object:

{{
Bs2IoLite.spin

This object features method calls similar to the PBASIC commands for the BASIC
Stamp
2 microcontroller, such as high, low, in0 through in15, toggle, and pause.

}}

PUB high(pin)
''Make pin output-high.

 outa[pin]~~
 dira[pin]~~

PUB low(pin)
''Make pin output-low

 outa[pin]~
 dira[pin]~~

PUB in(pin) : state
{{Return the state of pin.
If pin is an output, state reflects the
output signal. If pin is an input, state will be 1 if the voltage
applied to pin is above 1.65 V, or 0 if it is below.}}

 state := ina[pin]

PUB toggle(pin)
''Change pin's output state (high to low or low to high).

 !outa[pin]

PUB pause(ms) | time
''Make the program pause for a certain number of ms. This applies to
''the cog making the call. Other cogs will not be affected.

 time := ms * (clkfreq/1000)
 waitcnt(time + cnt)

2) For modifying HyperTerminal, save a copy of PropellerCOM under a new name, such as

TestPropellerStack.ht. Make sure HyperTerminal is disconnected, then click File and select
Properties. Click the Configure button in the TestPropellerStack properties window, and
change the value in the Bits per second field from 57600 to 19200. Click OK buttons until
you get back to HyperTerminal.

The modified Stack Length Demo object below has several changes. The code below the
“Code/Object Being Tested for Stack Usage” heading was replaced with the Blinker object
code. The Blinker object’s stack variable array was increased to 32 longs. Then, in the
“Temporary Code to Test Stack Usage” section, the Start method call was modified to work
with the Blinker object.

Copyright © Parallax Inc. ● PE Lab: Objects v1.0 ● 2/15/2007 ● Page 37 of 45

Run the StackLengthDemoModified.spin object below to test the stack required by the Blink
method for launching into another cog. After the Propeller Tool has completed its download,
you will have 2 seconds to connect HyperTerminal. The result should be 9.

Since the result is 9 instead of 10 predicted by the Methods lab, this project exposes an error
in the Methods lab’s section entitled: “How Much Stack Space for a Method Launched into a
Cog?” The time local variable was removed from the Blink method, but not from the
discussion of how much stack space the Blink method requires.

{{
StackLengthDemoModified.spin

This is a modified version of Stack Length Demo object from the Propeller Library
Demos folder. This modified version tests the Propeller Education Kit Objects
lab's Blinker object's Blink method for stack space requirements. See Project #2
in the Objects lab for more information.
}}

{•••
 Temporary Code to Test Stack Usage
••}

CON
 _clkmode = xtal1 + pll16x 'Use crystal * 16 for fast serial
 _xinfreq = 5_000_000 'External 5 MHz crystal on XI & XO

OBJ
 Stk : "Stack Length" 'Include Stack Length Object

PUB TestStack
 Stk.Init(@Stack, 32) 'Initialize reserved Stack space (reserved below)
 start(4, clkfreq/10, 20) 'Exercise code/object under test
 waitcnt(clkfreq * 3 + cnt) 'Wait ample time for max stack usage
 Stk.GetLength(30, 19200) 'Transmit results serially out P30 at 19,200 baud

{•••
Code/Object Being Tested for Stack Usage
••}

{{
File: Blinker.spin
Example cog manager for a blinking LED process.

SCHEMATIC
───────────────────────────────
 100 ω LED
 pin ──────────┐

 GND
───────────────────────────────
}}

VAR
 long stack[32] 'Cog stack space
 byte cog 'Cog ID

PUB Start(pin, rate, reps) : success
{{Start new blinking process in new cog; return True if successful.

Parameters:
 pin - the I/O connected to the LED circuit → see schematic
 rate - On/off cycle time is defined by the number of clock ticks

Copyright © Parallax Inc. ● PE Lab: Objects v1.0 ● 2/15/2007 ● Page 38 of 45

 reps - the number of on/off cycles
}}
 Stop
 success := (cog := cognew(Blink(pin, rate, reps), @stack) + 1)

PUB Stop
''Stop blinking process, if any.

 if Cog
 cogstop(Cog~ - 1)

PUB Blink(pin, rate, reps)
{{Blink an LED circuit connected to pin at a given rate for reps repetitions.

Parameters:
 pin - the I/O connected to the LED circuit → see schematic
 rate - On/off cycle time is defined by the number of clock ticks
 reps - the number of on/off cycles
}}

 dira[pin]~~
 outa[pin]~

 repeat reps * 2
 waitcnt(rate/2 + cnt)
 !outa[pin]

3) This solution uses global variables for days, hours, minutes, and seconds, and the

GoodTimeCount method updates all four values. It would also be possible to just track
seconds, and use other methods to convert to days, hours, etc.

''File: TickTock.spin

VAR

 long stack[50]
 byte cog
 long days, hours, minutes, seconds

PUB Start(setDay, setHour, setMinutes, setSeconds) : success
{{
Track time in another cog.

 Parameters - starting values for:
 setDay - day
 setHour - hour
 setMinutes - minute
 setSeconds - second
}}

 days := setDay
 hours := setHour
 minutes := setMinutes
 seconds := setSeconds

 Stop
 cog := cognew(GoodTimeCount, @stack)
 success := cog + 1

PUB Stop
''Stop counting time.

Copyright © Parallax Inc. ● PE Lab: Objects v1.0 ● 2/15/2007 ● Page 39 of 45

 if Cog
 cogstop(Cog~ - 1)

PUB Get(dayAddr, hourAddr, minAddr, secAddr) | time
{{
Get the current time. Values are loaded into variables at the
addresses provided to the method parameters.

 Parameters:
 dayAddr - day variable address
 hourAddr - hour variable address
 minAddr - minute variable address
 secAddr - secondAddress
}}

 long[dayAddr] := days
 long[hourAddr] := hours
 long[minAddr] := minutes
 long[secAddr] := seconds

PRI GoodTimeCount | dT, T

 dT := clkfreq
 T := cnt

 repeat

 T += dT
 waitcnt(T)
 seconds ++

 if seconds == 60
 seconds~
 minutes++
 if minutes == 60
 minutes~
 hours++
 if hours == 24
 hours~
 days++

Copyright © Parallax Inc. ● PE Lab: Objects v1.0 ● 2/15/2007 ● Page 40 of 45

Appendix: FullDuplexSerialPlus.spin

{{
───
File: FullDuplexSerialPlus.spin

This is the FullDuplexSerial object v1.1 from the Propeller Tool's Library
folder with modified documentation and methods for converting text strings
into numeric values in several bases.

───
}}

VAR

 long cog 'cog flag/id

 long rx_head '9 contiguous longs
 long rx_tail
 long tx_head
 long tx_tail
 long rx_pin
 long tx_pin
 long rxtx_mode
 long bit_ticks
 long buffer_ptr

 byte rx_buffer[16] 'transmit and receive buffers
 byte tx_buffer[16]

PUB start(rxpin, txpin, mode, baudrate) : okay
 {{
 Starts serial driver in a new cog

 rxpin - input receives signals from peripheral's TX pin
 txpin - output sends signals to peripheral's RX pin
 mode - bits in this variable configure signaling
 bit 0 inverts rx
 bit 1 inverts tx
 bit 2 open drain/source tx
 bit 3 ignor tx echo on rx
 baudrate - bits per second

 okay - returns false if no cog is available.
 }}

 stop
 longfill(@rx_head, 0, 4)
 longmove(@rx_pin, @rxpin, 3)
 bit_ticks := clkfreq / baudrate
 buffer_ptr := @rx_buffer
 okay := cog := cognew(@entry, @rx_head) + 1

PUB stop

 '' Stops serial driver - frees a cog

 if cog
 cogstop(cog~ - 1)
 longfill(@rx_head, 0, 9)

Copyright © Parallax Inc. ● PE Lab: Objects v1.0 ● 2/15/2007 ● Page 41 of 45

PUB tx(txbyte)

 '' Sends byte (may wait for room in buffer)

 repeat until (tx_tail <> (tx_head + 1) & $F)
 tx_buffer[tx_head] := txbyte
 tx_head := (tx_head + 1) & $F

 if rxtx_mode & %1000
 rx

PUB rx : rxbyte

 '' Receives byte (may wait for byte)
 '' rxbyte returns $00..$FF

 repeat while (rxbyte := rxcheck) < 0

PUB rxflush

 '' Flush receive buffer

 repeat while rxcheck => 0

PUB rxcheck : rxbyte

 '' Check if byte received (never waits)
 '' rxbyte returns -1 if no byte received, $00..$FF if byte

 rxbyte--
 if rx_tail <> rx_head
 rxbyte := rx_buffer[rx_tail]
 rx_tail := (rx_tail + 1) & $F

PUB rxtime(ms) : rxbyte | t

 '' Wait ms milliseconds for a byte to be received
 '' returns -1 if no byte received, $00..$FF if byte

 t := cnt
 repeat until (rxbyte := rxcheck) => 0 or (cnt - t) / (clkfreq / 1000) > ms

PUB str(stringptr)

 '' Send zero terminated string that starts at the stringptr memory address

 repeat strsize(stringptr)
 tx(byte[stringptr++])

PUB getstr(stringptr) | index
 '' Gets zero terminated string and stores it, starting at the stringptr memory address
 index~
 repeat until ((byte[stringptr][index++] := rx) == 13)
 byte[--index]~

PUB dec(value) | i

'' Prints a decimal number

 if value < 0
 -value
 tx("-")

 i := 1_000_000_000

Copyright © Parallax Inc. ● PE Lab: Objects v1.0 ● 2/15/2007 ● Page 42 of 45

 repeat 10
 if value => i
 tx(value / i + "0")
 value //= i
 result~~
 elseif result or i == 1
 tx("0")
 i /= 10

PUB GetDec : value | tempstr[11]

 '' Gets decimal character representation of a number from the terminal
 '' Returns the corresponding value

 GetStr(@tempstr)
 value := StrToDec(@tempstr)

PUB StrToDec(stringptr) : value | char, index, multiply

 '' Converts a zero terminated string representation of a decimal number to a value

 value := index := 0
 repeat until ((char := byte[stringptr][index++]) == 0)
 if char => "0" and char =< "9"
 value := value * 10 + (char - "0")
 if byte[stringptr] == "-"
 value := - value

PUB bin(value, digits)

 '' Sends the character representation of a binary number to the terminal.

 value <<= 32 - digits
 repeat digits
 tx((value <-= 1) & 1 + "0")

PUB GetBin : value | tempstr[11]

 '' Gets binary character representation of a number from the terminal
 '' Returns the corresponding value

 GetStr(@tempstr)
 value := StrToBin(@tempstr)

PUB StrToBin(stringptr) : value | char, index

 '' Converts a zero terminated string representaton of a binary number to a value

 value := index := 0
 repeat until ((char := byte[stringptr][index++]) == 0)
 if char => "0" and char =< "1"
 value := value * 2 + (char - "0")
 if byte[stringptr] == "-"
 value := - value

PUB hex(value, digits)

 '' Print a hexadecimal number

 value <<= (8 - digits) << 2
 repeat digits
 tx(lookupz((value <-= 4) & $F : "0".."9", "A".."F"))

PUB GetHex : value | tempstr[11]

Copyright © Parallax Inc. ● PE Lab: Objects v1.0 ● 2/15/2007 ● Page 43 of 45

 '' Gets hexadecimal character representation of a number from the terminal
 '' Returns the corresponding value

 GetStr(@tempstr)
 value := StrToHex(@tempstr)

PUB StrToHex(stringptr) : value | char, index

 '' Converts a zero terminated string representaton of a hexadecimal number to a value

 value := index := 0
 repeat until ((char := byte[stringptr][index++]) == 0)
 if (char => "0" and char =< "9")
 value := value * 16 + (char - "0")
 elseif (char => "A" and char =< "F")
 value := value * 16 + (10 + char - "A")
 elseif(char => "a" and char =< "f")
 value := value * 16 + (10 + char - "a")
 if byte[stringptr] == "-"
 value := - value

DAT

'***********************************
'* Assembly language serial driver *
'***********************************

 org
'
'
' Entry
'
entry mov t1,par 'get structure address
 add t1,#4 << 2 'skip past heads and tails

 rdlong t2,t1 'get rx_pin
 mov rxmask,#1
 shl rxmask,t2

 add t1,#4 'get tx_pin
 rdlong t2,t1
 mov txmask,#1
 shl txmask,t2

 add t1,#4 'get rxtx_mode
 rdlong rxtxmode,t1

 add t1,#4 'get bit_ticks
 rdlong bitticks,t1

 add t1,#4 'get buffer_ptr
 rdlong rxbuff,t1
 mov txbuff,rxbuff
 add txbuff,#16

 test rxtxmode,#%100 wz 'init tx pin according to mode
 test rxtxmode,#%010 wc
 if_z_ne_c or outa,txmask
 if_z or dira,txmask

 mov txcode,#transmit 'initialize ping-pong multitasking
'
'
' Receive
'

Copyright © Parallax Inc. ● PE Lab: Objects v1.0 ● 2/15/2007 ● Page 44 of 45

receive jmpret rxcode,txcode 'run a chunk of transmit code, then
return

 test rxtxmode,#%001 wz 'wait for start bit on rx pin
 test rxmask,ina wc
 if_z_eq_c jmp #receive

 mov rxbits,#9 'ready to receive byte
 mov rxcnt,bitticks
 shr rxcnt,#1
 add rxcnt,cnt

:bit add rxcnt,bitticks 'ready next bit period

:wait jmpret rxcode,txcode 'run a chuck of transmit code, then
return

 mov t1,rxcnt 'check if bit receive period done
 sub t1,cnt
 cmps t1,#0 wc
 if_nc jmp #:wait

 test rxmask,ina wc 'receive bit on rx pin
 rcr rxdata,#1
 djnz rxbits,#:bit

 shr rxdata,#32-9 'justify and trim received byte
 and rxdata,#$FF
 test rxtxmode,#%001 wz 'if rx inverted, invert byte
 if_nz xor rxdata,#$FF

 rdlong t2,par 'save received byte and inc head
 add t2,rxbuff
 wrbyte rxdata,t2
 sub t2,rxbuff
 add t2,#1
 and t2,#$0F
 wrlong t2,par

 jmp #receive 'byte done, receive next byte
'
'
' Transmit
'
transmit jmpret txcode,rxcode 'run a chunk of receive code, then
return

 mov t1,par 'check for head <> tail
 add t1,#2 << 2
 rdlong t2,t1
 add t1,#1 << 2
 rdlong t3,t1
 cmp t2,t3 wz
 if_z jmp #transmit

 add t3,txbuff 'get byte and inc tail
 rdbyte txdata,t3
 sub t3,txbuff
 add t3,#1
 and t3,#$0F
 wrlong t3,t1

 or txdata,#$100 'ready byte to transmit
 shl txdata,#2
 or txdata,#1
 mov txbits,#11

Copyright © Parallax Inc. ● PE Lab: Objects v1.0 ● 2/15/2007 ● Page 45 of 45

 mov txcnt,cnt

:bit test rxtxmode,#%100 wz 'output bit on tx pin according to
mode
 test rxtxmode,#%010 wc
 if_z_and_c xor txdata,#1
 shr txdata,#1 wc
 if_z muxc outa,txmask
 if_nz muxnc dira,txmask
 add txcnt,bitticks 'ready next cnt

:wait jmpret txcode,rxcode 'run a chunk of receive code, then
return

 mov t1,txcnt 'check if bit transmit period done
 sub t1,cnt
 cmps t1,#0 wc
 if_nc jmp #:wait

 djnz txbits,#:bit 'another bit to transmit?

 jmp #transmit 'byte done, transmit next byte
'
'
' Uninitialized data
'
t1 res 1
t2 res 1
t3 res 1

rxtxmode res 1
bitticks res 1

rxmask res 1
rxbuff res 1
rxdata res 1
rxbits res 1
rxcnt res 1
rxcode res 1

txmask res 1
txbuff res 1
txdata res 1
txbits res 1
txcnt res 1
txcode res 1

