
DATA SHEET

1

picoJava I

picoJava ™ I
Java Processor Core

DESCRIPTION

picoJava™ I is a uniquely designed processor core which natively executes Java bytecodes as defined by the
Java Virtual Machine (JVM).

Most processors require the JVM to be interpreted by them. This requires that the JVM bytecodes be inter-
preted or dynamically compiled using a Just-In-Time (JIT) compiler for a specific processor. picoJava I
eliminates the need for this. JIT compilers or interpreters and the overhead that accompany them are elimi-
nated by the picoJava I processor core.

picoJava I accelerates the JVM runtime environment. The picoJava I processor core features thread synchroni-
zation and a variety of garbage collection methods. It also supports method invocations and the hiding of
loads from local variables, thus streamlining object oriented programming. The picoJava I processor core can
be optimized for power, die size, or speed. This flexibility gives the price/performance necessary for a range
of target applications. picoJava I’s architecture is composed of the following basic units: integer execution
unit, floating point unit, instruction cache, data cache, stack manager, and bus interface unit.

The picoJava I processor core executes the most commonly used instructions in hardware. Complex instruc-
tions are microcoded and the most complex instructions are trapped and emulated in software. Based on a
four stage pipeline with a 64 entry stack cache, top-of-stack operations are accelerated by instruction folding,
a process of loading and executing an instruction in a single cycle. In addition to the standard JVM bytecodes,
picoJava I implements a set of extended bytecodes. These bytecodes can only be executed by the operating
system and are not available to the user. Extended bytecodes support arbitrary load/store, cache manage-
ment, and internal register access. Both data and instruction caches are configurable from 0-16 kilobytes
(two-way, set associative). The interface to I/O and memory is managed by the bus interface unit. Single and
double precision floating point data are enabled by a floating point unit if the target application design
requires it.

Features Benefits

• Customer configurable core • Market differentiation

• Executes Java bytecodes natively • Most efficient execution of Java applications

• Hardware stack architecture • Supports JVM execution stack efficiently

• Instruction folding • Better cycles per instruction (CPI)

• 4 stage RISC pipeline • Simplicity

• Extended instruction set • Support for system level functions

• Hardware support of runtime environment • Efficient JVM

• Complete static core • Low power capability

December 1997

2

picoJava I Java Processor Core
picoJava™ I

December 1997Sun Microsystems, Inc

BLOCK DIAGRAM AND TYPICAL APPLICATION

Figure 1. picoJava I Block Diagram

Stack Cache Unit
(64 Entries)

Instruction Buffer
Instruction Decode

and Folding

32

32

Instruction Cache
0 - 16 KB

32

PC and Trap

Execution
Control Logic

96
Integer Unit Data Path Floating Point Unit Data Path

Data Cache
0 - 16 KB

32

Data Cache Controller

I/O Bus and Memory Interface Unit

= Configurable

Figure 2. Example of picoJava I Chip-Based Design

picoJava l Core

32

pj_rese t

pj_clk_out

pj_irl

pj_no_fpu

pj_standby

pj_scan_mod

pj_scan_in

pj_scan_out

pj_clk

pj_nmi

Core
Interface
 Signals

Debug
Interface
 Signals

pj_data_out[31:00]

pj_data_in[31:00]
32

32+4+3
pj_address[29:0]
pj_type, pj_size

pj_tv

pj_ack[1:0]
2

Memory
Interface
Signals

Memory Controller

arb

DRAM PROM

ra
s

ca
s

r/w

Memory I/O
I/O Bus
[e.g., PCI]

Customer
Defined I/O

Address Path Data Path

3

Java Processor Core
picoJava™ I

picoJava I

December 1997 Sun Microsystems, Inc

TECHNICAL OVERVIEW

Instruction Fetch/Cache Unit (ICU)

The Instruction Cache Unit (ICU) fetches instructions from the Instruction cache (ICache) and provides them
to the decode block located in the integer unit. In order to separate the rest of the pipeline from the fetch stage,
a twelve byte Instruction buffer (IBuffer) is used to hold any instructions fetched from memory until they are
consumed by the integer unit.

The Instruction cache is a direct-mapped, eight byte line size cache with single cycle latency. The cache size is
configurable to 0KByte, 1KByte, 2KByte, 4KByte (default), 8KByte and 16KByte sizes.

Integer Execution Unit (IEU)

The Integer Execution Unit (IEU) executes all the non floating point instructions defined in JavaSoft’s The Java
Virtual Machine Specification. In addition to the JVM defined instructions, the IEU implements a set of instruc-
tions called EXTENDED BYTE CODES. These extra opcodes are necessary to support system level functions such
as arbitrary load/store, cache management, and internal register access. These instructions can only be exe-
cuted by the operating system and are not available to the user.

The IEU is the gate-keeper for the execution of all instructions. It fetches instructions from the instruction
cache unit (ICU), and if floating point, they are directed to the Floating Point unit (FPU) for execution. The
IEU also fetches data from and stores it back to the data cache unit (DCU).

Since picoJava I is a stack based architecture, the IEU does not contain any general purpose registers visible to
the programmer. Rather it contains a cache of the operating stack area, known as the Stack Cache (SC). A
microcode ROM is also contained in the IEU which executes certain JVM instructions.

Floating Point Unit (FPU)

The Floating Point Unit (FPU) executes all mathematical instructions. Optimized for single precision perfor-
mance and smaller core area the FPU is a microcoded engine with a 32-bit data path. Double precision (DP)
operations can be implemented but require approximately two to four times the number of cycles as single
precision (SP) operations. During typical operation, the microcode sequencer will present a new microword
to the data path unit and will monitor the returning branch condition to determine the next microword.

Data Cache Unit (DCU)

The Data Cache Unit (DCU) arbitrates requests coming from the dribble manager or the pipeline. Request pri-
ority is given to the pipeline.

4

picoJava I Java Processor Core
picoJava™ I

December 1997Sun Microsystems, Inc

Stack Manager Unit (SMU))

The Stack Manager Unit (SMU) consists of a three-read, two-write port stack cache, Stack Control Unit, and
the Dribble Manager.

The Stack Control Unit provides the necessary control signals for the IEU (two read, one write port to stack
cache) to retrieve operands. It also controls the reading of data from the data cache into the stack Cache and
writing back from the stack cache to data cache.

The Dribble Manager dribbles data between the stack and memory whenever there is an overflow or under-
flow in the stack cache. The Dribble Manager provides the necessary control signals for a single read-write
port of the stack cache used exclusively for dribbling purposes.

Bus Interface Unit (BIU)

The Bus Interface Unit (BIU) is the interface between the picoJava core, external memory, and other I/O
devices. Interfacing directly to the instruction cache and the Data Cache Units, the BIU is a simple single mas-
ter memory I/O controller. If multimaster operation is required, an external bus controller/arbitrator is used.

Powerdown, Clock, Scan Unit (PCSU)

The Powerdown-Clock-Scan Unit (PCSU) integrates power management, internal clock generation, system
reset, scan, and test. The picoJava processor core supports two levels of low-power operation and provides
the basic MUX scan facility that can be connected to a JTAG controller.

5

Java Processor Core
picoJava™ I

picoJava I

December 1997 Sun Microsystems, Inc

INTERNAL SIGNAL DESCRIPTION

1. Numbers are equivalent to two input NAND gate delays.

TABLE 1: Internal Signal Definition

Signal Delay [1] Type R# A/S Definition

pj_reset 5 setup R1 S Reset and start the processor at address 0x00000000

pj_reset_out 2 valid R2 Indicates the reset Extended Byte code was executed

pj_clk - In R0 CLK picoJava cores clock

pj_clk_out * valid R1 picoJava’s clock to external interfaces

pj_irl [3:0] - In A Interrupt Exception Signals

pj_nmi - In A Non-maskable interrupt input to picoJava

pj_boot8 - static R0 S Controls size of Instruction Cache fetches

pj_standby - static R0 S Standby pin to control power consumption 90%

pj_standby_out 4 valid R1 Notify system that processor is in Standby Mode

pj_no_fpu - static R0 S Disable internal Floating Point Unit

pj_scan_out 2 valid R0 Provide basic scan facility

pj_scan_mode 5 setup R1 S Switch flip-flops in core to serial shift

pj_scan_in 3 setup R1 S Input to the processor core’s scan chain

pj_data_in[31:0] 5 setup R1 S Used during reads

pj_data_out[31:0] 4 valid R1 S Used during writes

pj_address[31:0] 10 valid R1 Used to interface with non-multiplexed 32-bit address buss

pj_size[1:0] 6 valid R1 Indicates the size of requested data

pj_type[3:0] 6 valid R1 Indicates the type of transaction requested by Integer Unit

pj_tv 5 valid R1 Asserted to start new transaction to the Memory Controller

pj_ack[1:0] 12 setup R0 Indicates that data will be driving in same cycle on pj_data_in

pj_ale[1:0] 6 valid R0 Enables address latching

pj_halt 2 setup R0 S Halt instruction fetching

pj_resume 2 setup R0 S Resume instruction fetching

pj_brk1_sync 10 valid R2 S Breakpoint 1 detected by the Core

pj_brk2_sync 10 valid R2 S Breakpoint 2 detected by the Core

pj_in_halt 1 valid R0 S Processor is in halt mode (not fetching instructions)

pj_inst_complete 10 valid R2 S An instruction was just retrieved (when this signal is high)

6

picoJava I Java Processor Core
picoJava™ I

December 1997Sun Microsystems, Inc

TIMING OF SIGNALS

The picoJava I processor core is used with a variety of memory controllers: DRAM, SDRAM, EDO, SRAM,
FLASH. It can also be interfaced to various I/O Controllers, such as PCI, USB, PCMCIA. To achieve this flex-
ibility without loss in memory latency, the picoJava I processor core memory interfaces with a VIRTUAL

memory controller.

Transactions fall into two main types: “Read-Type Transactions” and “Write-Type Transactions”. The transac-
tion protocol is one of request and accept. This simplifies the design of the memory controller - which can be
designed by a third party. This protocol achieves the minimum possible read latency making it easy to
increase the number of memory controller ports and still support high bandwidth memory, such as SDRAM.

The memory bus is 32-bit wide. Sub-32-bit accesses are big-endian ordered. Memory access byte enable is
indicated by interface signals. Sub 32-bit devices require swap logic at their interface for reads and writes.
Access to devices greater than 32-bit wide will need data buffering and routing the data to the proper mem-
ory module.

7

Java Processor Core
picoJava™ I

picoJava I

December 1997 Sun Microsystems, Inc

BUS TRANSACTION WAVEFORMS

Figure 3. Cached Read Transaction Followed by a Non-Cached Read Transaction

Note: On back-to-back pending transactions from different devices, the pj_tv signal will be continuously
asserted. It does not de-assert on these transactions.

Figure 4. Cached Write Transaction Followed by a Non-Cached Write Transaction

Note: On back-to-back pending transactions from different devices, the pj_tv signal will be continuously
asserted. It does not de-assert on these transactions.

CLK
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

pj_tv

 pj_address

 pj_type 0x0

 pj_size 0x3

 pj_ack 0x10x10x1

 pj_data_in D0D0 D1

pj_data_out

pj_ale

Read-Type Transaction #1 Read-Type Transaction #2

Can be spaced any number of clocks

Flow control + Arbitration Signals

CLK
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 2

pj_tv

pj_ale

 pj_address

 pj_type 0x5 0x7

 pj_size 0x1 0x2

 pj_ack 0x10x10x1

 pj_data_out D0 D1 D0

pj_data in
can be any number of clocks from 1-n

max

Write-Type Transaction #1 Write-Type Transaction #2

Can be any number of clocks

pj_tv to be de-asserted 1 clock after accept (pj_ack) is sampled active

8

picoJava I Java Processor Core
picoJava™ I

December 1997Sun Microsystems, Inc

Figure 5. Cached Read Transaction Followed by a Cached Write Transaction

Note: On back-to-back pending transactions from different devices, the pj_tv signal will be continuously
asserted. It does not de-assert on these transactions.

Figure 6. Cached Load Miss

CLK

pj_tv

pj_ale

pj_address

pj_type

pj_size

pj_ack

pj_data_in

pj_data_out

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

0x1 0x1

D1D0

D1D0

0x1 0x1

0x20x1

0x70x5

Next transaction can begin immediately after the previous one

after accept (pj_ack) is sampled active

Read-Type Transaction #1 Write-Type Transaction #2

24

CLK

pj_tv

pj_address

pj_size

pj_type

pj_irl

pj_data_in

pj_data_out

8*

0000 0034

2

4

8* 8* 8*

pj_ack 10101010

pj_reset

pj_standby_out

9

Java Processor Core
picoJava™ I

picoJava I

December 1997 Sun Microsystems, Inc

Figure 7. Non-Cached Write

Figure 8. WriteBack and Cached Read Miss

CLK

pj_tv

pj_address

pj_size

pj_type

pj_irl

pj_data_in

pj_data_out

0000 0004

1

pj_ack 0

pj_reset

pj_standby_out

0000 0000

20

70

89AB CE00 0000 CE44

1 0

CLK

pj_tv

pj_address

pj_size

pj_type

pj_irl

pj_data_in

pj_data_out

0000 0030

pj_ack

pj_reset

pj_standby_out

0000 0050

2

0*

5 4

89AB D372 89AB D38389AB D36189AB D350

* * *

1 0 1 0 1 1 1 1 1 10 0 0 0 0

0

10

picoJava I Java Processor Core
picoJava™ I

December 1997Sun Microsystems, Inc

11

Java Processor Core
picoJava™ I

picoJava I

December 1997 Sun Microsystems, Inc

©1997 Sun Microsystems, Inc. All Rights reserved.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT ANY EXPRESS REPRESENTATIONS OF WARRANTIES. IN
ADDITION, SUN MICROSYSTEMS, INC. DISCLAIMS ALL IMPLIED REPRESENTATIONS AND WARRANTIES, INCLUDING ANY WARRANTY OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTURAL PROPERTY RIGHTS.

This document contains proprietary information of Sun Microsystems, Inc. or under license from third parties. No part of this document may be reproduced
in any form or by any means or transferred to any third party without the prior written consent of Sun Microsystems, Inc.

Sun, Sun Microsystems and the Sun Logo are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries. All
SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The information contained in this document is not designed or intended for use in on-line control of aircraft, aircraft navigation or aircraft communications;
or in the design, construction, operation or maintenance of any nuclear facility. Sun disclaims any express or implied warranty of fitness for such uses.

Part Number: 805-2990-01

Sun Microsystems, Inc.
901 San Antonio Road

Palo Alto, CA 94303-4900 USA
Telephone: 800-681-8845

Internet: www.sun.com/microelectronics

picoJava I

